RST Switching Bi-controller Based Flatness for an Electronic Throttle Valve
DOI:
https://doi.org/10.15837/ijccc.2023.5.5630Keywords:
Electronic throttle valve, RST switching bi-controller, flatness, Luenberger observers, LMIs, sensor fault detectionAbstract
In this paper, an RST switching bi-controller, based on flatness and on Luenberger observers, is designed to control the opening angle change of an Electronic Throttle Valve (ETV), to compensate unexpected external disturbances and to detect sensor faults. Two identified mathematical linear models are established to simulate the ETV for two different positions of the throttle plate. The use of robust RST switching bi-controller based-flatness approach by the development of closedloop control is proposed, in order to obtain a stable system tracking a desired flat trajectory. The switching between the two models using stateflow tool is based on residual values generated by using the Luenberger observers in order to detect and to localize sensor faults occurrence. The observer’s gains are determined using Linear Matrix Inequalities (LMIs) taking into account the stability of the system based on Lyapunov theory. The simulation results show the efficiency of the developed robust switching RST bi-controller based-flatness in terms of tracking the desired angle’s reference trajectory, rejecting disturbances and detecting sensor faults.References
Acho, L.; Pujol-Vázquez, G.; Gibergans-Báguena, J. (2020). A recent electronic control circuit to a throttle device, Electronics. 9(1), 191-200, 2020.
https://doi.org/10.3390/electronics9010191
Aidi, I.; Ayadi, M.; Benrejeb, M.; Borne, P. (2010). Flatness-based control of the throttle valve using a neural observer, Journal of Research and Surveys, 12, 333-344, 2010.
Alessandri A.; Coletta, P. (2001). Design of Luenberger observers for a class of hybrid linear systems, Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, vol. 2034,7- 18, 2001.
https://doi.org/10.1007/3-540-45351-2_5
Amini, M. R.; Razmara, M.; Shahbakhti, M. (2017). Robust model-based discrete sliding mode control of an automotive electronic throttle body, SAE International Journal of Commercial Vehicles, 10(1), 317-330, 2017.
https://doi.org/10.4271/2017-01-0598
Ashok, B.; Ashok, S. D.; Kumar, C. R.; Kavitha, C. (2019). Neural network based virtual sensor for throttle valve position estimation in a SI engine, International Conference on Advances in Design, Materials, Manufacturing and Surface Engineering for Mobility, 2019.
https://doi.org/10.4271/2019-28-0080
Benrejeb, M. (2010). Stability Study of two levels hierarchical nonlinear system, IFAC Proceedings Volumes, 43(8), 30-41, 2010.
https://doi.org/10.3182/20100712-3-FR-2020.00006
Benrejeb, M.; Gasmi, M.; Borne, P. (2005). New stability conditions for TS fuzzy continuous nonlinear models, Nonlinear Dynamics and Systems Theory, 5(4), 369-379, 2005.
Benrejeb, M. (1980). Sur l'analyse et la synthèse de processus complexes hiérarchisés. Application aux systèmes singulièrement perturbés, Thèse de Doctorat ès Sciences Physiques, Université des Sciences et Technologie de Lille, 1980.
Bouallègue, S.; Haggège J.; Benrejeb M. (2011). Particle swarm optimization-based fixed-structure H∞ control design. International Journal of Control, Automation, and Systems , 9(2), 258-266, 2011.
https://doi.org/10.1007/s12555-011-0207-2
Chang, S. C. (2021). Stability analysis and chaos control of electronic throttle dynamical system, Mathematical Problems in Engineering, vol. 2021, 1-14, 2021.
https://doi.org/10.1155/2021/5286043
Chihi, I.; Abdelkrim, A.; Benrejeb, M. (2015). Multimodel approach to characterize human handwriting motion. Biological Cybernitics, 2015.
https://doi.org/10.1007/s00422-015-0670-6
Deur, J.; Pavkovic, D.; Peric, N.; Jansz, M.; Hrovat, D. (2004). An electronic throttle control strategy including compensation of friction and limp-home effects, In IEEE Trans. on Industry Applications, 40, 821-834, 2004.
https://doi.org/10.1109/TIA.2004.827441
Dhanasekar, R.; Ganesh Kumar, S.; Rivera, M. (2016). Sliding mode control of electric drives/review, IEEE International Conference on Automatica (ICA-ACCA),1-7, Curico, 2016.
https://doi.org/10.1109/ICA-ACCA.2016.7778466
Dulau, M. ; Oltean, S. E., (2020). Simulations of robust control of the throttle valve position, IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 1-5, 2020.
https://doi.org/10.1109/AQTR49680.2020.9129912
Elfelly, N.; Dieulot, J.Y.; Benrejeb, M.; Borne, P. (2012). A Multimodel Approach for Complex Systems Modeling based on Classification Algorithms International Journal of Computers, Communications & Control (IJCCC), 7(4), 644-659, 2012.
https://doi.org/10.15837/ijccc.2012.4.1364
Fliess, M.; Levine, J.; Martin, P. ; Rouchon, P. (1992). On differentially flat nonlinear systems, In Proceedings International Federation for Automatic Control (IFAC) - Nonlinear Control System Symposium (NOLCOS), 408-413, Design, Bordeaux, 1992.
https://doi.org/10.1016/B978-0-08-041901-5.50031-2
Gharsallaoui, H.; Gritli, W.; Benrejeb, M. (2016). Robust flatness-based switching reconfiguration control using stateflow machines of electronic throttle valve. 3rd International Conference on Structural Nonlinear Dynamics and Diagnosis (CSNDD), Marrakech, 2016.
https://doi.org/10.1051/matecconf/20168301006
Gharsallaoui, H.; Ayadi, M.; Benrejeb, M.; Borne, P. (2009). Flatness-based control and conventional RST polynomial control of thermal process. International Journal of Computers, Communications & Control (IJCCC), 4(1), 27-41, 2009.
https://doi.org/10.15837/ijccc.2009.1.2412
Gharsallaoui, H.; Ayadi, M.; Benrejeb, M.; Borne, P. (2010) Robust Flatness-based Multicontrollers Approach, Studies in Informatics and Control, 1220-1766, 19(4), pp. 357-368, 2010.
https://doi.org/10.24846/v19i4y201003
Gharsallaoui, H.; Ayadi, M.; Benrejeb, M.; Borne, P. (2013) Comparison of New Flatness-based Switching Reconfiguration Control Approach, International Conference on Control, Decision and Information Technologies (CoDIT 2013), Hammamet, 2013
https://doi.org/10.1109/CoDIT.2013.6689612
Gharsallaoui, H.; Ayadi, M.; Benrejeb, M. ; Borne, P. (2010). Flatness-based Switching Control. The 12th LSS IFAC Symposium on Large Scale Systems: Theory and Applications, Lille, 2010.
https://doi.org/10.3182/20100712-3-FR-2020.00073
Ghorbel, C.; Abdelkrim, A.; Benrejeb, M. (2010). Observers for continuous nonlinear systems containing unknown parameters and described by Takagi-Sugeno Fuzzy model, International Journal of Control and Automation, 3(2), 2010.
https://doi.org/10.2316/Journal.201.2010.2.201-2175
Gong, X.; Hu, Y.; Sun, P.; Chen, H. (2012). A nonlinear feedforward-feedback controller design for electronic throttle based on flatness In the Chinese on Control and Decision Conference (CCDC), 1542-1547, Taiwan, 2012.
Gritli, W.; Gharsallaoui, H.; Benrejeb, M. (2018). Electronic throttle valve Takagi-Sugeno fuzzy control based on nonlinear unknown input observers, International Journal of Computers, Communications & Control, (IJCCC), 13(5), 808-823, 2018.
https://doi.org/10.15837/ijccc.2018.5.3281
Gritli, W.; Gharsallaoui, H.; Benrejeb, M. (2016). PID-type fuzzy scaling factors tuning using genetic algorithm and simulink design optimization for electronic throttle valve International Conference on Control, Decision and Information Technologies (CoDIT), 216-221, Malta, 2016.
https://doi.org/10.1109/CoDIT.2016.7593563
Kasab, P. V.; Chopade, N. B.; Bhagat, S. (2019). Implementation of throttle position sensor for angular movement in automobiles, 5th International Conference on Computing Communication Control and Automation, Pune, 1-4, 2019.
https://doi.org/10.1109/ICCUBEA47591.2019.9128507
Khedher, A.; Ben Othman, K.; Benrejeb, M.; Maquin, D. (2010). Adaptative observer for fault estimation in nonlinear systems described by Takagi-Sugeno model, Control and Automation (MED), 18th Mediterranean Conference, Marrakech, 261-266, 2010.
https://doi.org/10.1109/MED.2010.5547678
Ksouri-Lahmari, M.; Borne, P.; Benrejeb, M. (2004). Multimodel: the construction of model basis. Studies in Informatics and Control, 13(3), 199-210, 2004.
Ksouri-Lahmari, M.; El Kamel, A.;Borne, P.; Benrejeb, M. (1997). Multimodel multicontrol decision making in system automation, Conference on System Man Cybernetics, 4, 3490-3494, 1997.
Lebbal, M.; Chafouk, H.; Hoblos, G.; Lefebvre, D. (2007). Modelling and identification of nonlinear systems by a multimodel approach: application to a throttle valve. In Int. Journal Information and Systems Science, 3, 67-87, 2007.
Manai, Y.; Benrejeb, M. (2011). New condition of stabilization for continuous Takagi-Sugeno fuzzy system based on fuzzy Lyapunov function. International Journal of Control and Automation, 4(3), 51-63, 2011.
https://doi.org/10.1109/CCCA.2011.6031521
Prodanovic, J.; Stojic, B. (2019). Control strategy for aftermarker eletronic throttle control, Mobility and Vehicle Mechanics, 45(3), 41-50, 2019.
https://doi.org/10.24874/mvm.2019.45.03.04
Pujol, G.; Segui, Y. S.; Acho Zuppa, L.; Vargas, A. N. (2015). Asymmetric modelling and control of an electronic throttle, International Journal of Numerical Modelling Electronic Networks Devices and Fields, 29(2), 2015.
https://doi.org/10.1002/jnm.2063
Sakly, M.; Sakly, A.; Mahjoub, N.; Benrejeb, M. (2009). Optimization Switching instants for optimal control of linear switched system based on genetic algorithms, IFAC Proceedings Volumes, 42(19), 249-253, 2009.
https://doi.org/10.3182/20090921-3-TR-3005.00045
Singureanu, M.; Copae, I. (2021). Diagnosis of gasoline injection engine and fault tolerant control, International Journal for Research in Applied Science and Engineering Technology (IJRASET), 9(7), 23, 2021.
https://doi.org/10.22214/ijraset.2021.39273
Song, D.; Li Y.(2020). Study on composite control strategy of transient air-fuel ratio for gasoline engine based on model, IOP Conference Series: Earth and Environmental Science, 513(1), 27-33, 2020.
https://doi.org/10.1088/1755-1315/513/1/012027
Thakur, A .(2019). An overview of "drive by wire" technology for automobiles, Amity University IEEE Conference, London, 2019.
Vasak, M.; Baotic, M.; Petrovic, I.; Peric, N. (2007). Hybrid theory-based time-optimal control of an electronic throttle. IEEE Trans. on Industrial Electronics, 54, 1483-1494, 2007.
https://doi.org/10.1109/TIE.2007.893060
Xue J.; Jiao X. (2021). Barrier Lyapunov function-based adaptive backstepping control for electronic throttle control system, Transportmetrica A: Transportation Science, 17(1), 59-80, 2021.
Yang, C. (2004). Model-based analysis and tuning of electronic throttle controllers. Visteon Corporation, SAE World Congress Detroit, 63-65-67, Michigan, 2004.
https://doi.org/10.4271/2004-01-0524
Yuan, X. F.; Wang, Y. N; Sun, W; Wu, L. H. (2010). RBF networks-based adaptive inverse model control system for electronic throttle. IEEE Trans. on Control Systems Technology, 18, 750- 756, 2010.
https://doi.org/10.1109/TCST.2009.2026397
Zhang, J.; Li, J. (2018). Adaptive backstepping sliding mode control for wheel slip tracking of vehicle with uncertainty observer. Measurement and Control Control, 51(9-10), 396-405, 2018.
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Hajer Gharsallaoui, Wafa Gritli, Mohamed Benrejeb, Pierre Borne
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.