Automated Recognition Systems: Theoretical and Practical Implementation of Active Learning for Extracting Knowledge in Image-based Transfer Learning of Living Organisms
DOI:
https://doi.org/10.15837/ijccc.2023.6.5728Keywords:
articial intelligence, Machine Learning, Human Activity Recognition (HAR), Multi-Layer Perceptron (MLP)., Learning by transferAbstract
In our research, we propose a model that leverages transfer learning and active learning techniques to accumulate knowledge and effectively solve complex problems in the field of artificial intelligence. This model operates within a parallel learning paradigm, aiming to mimic the continuous learning and improvement observed in human beings. To facilitate knowledge accumulation, we introduce a convolutional deep classification auto encoder that extracts spatially localized features from images. This enhances the model’s ability to extract relevant information. Additionally, we propose a learning classification system based on a code fragment, enabling effective representation and transfer of knowledge across different domains. Our research culminates in a theoretical and practical prototype for active learning-based knowledge extraction in various living organisms, including humans, plants, and animals. This knowledge extraction is achieved through image-based learning transfer, focusing on advancing activity recognition in image processing. Experimental results confirm that our method outperforms both baseline approaches and state-of-the-art convolutional neural network methods, underscoring its effectiveness and potential.References
Agarwal, G., et al. (2006). First steps toward an electronic field guide for plants. Taxon, 55(3),a97-610.
https://doi.org/10.2307/25065637
Alaloul, W. S., & Qureshi, A. H. (2020). Data processing using artificial neural network. In Dynamic Data Assimilation-Beating the Uncertainties.
Al-Hiary, H., Bani-Ahmad, S., Reyalat, M., Braik, M., & Alrahamneh, Z. (2011). Fast and accurate detection and classification of plant diseases. International Journal of Computer Applications, 17(1), 31-38.
https://doi.org/10.5120/2183-2754
Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). Plant leaf disease classification using Efficient- Net deep learning model. Ecol. Inform., 61, 101182.
https://doi.org/10.1016/j.ecoinf.2020.101182
Barbosa, P. (2018). Human Activities Recognition: A Transfer Learning Approach. Available online at https://repositorio-aberto.up.pt/bitstream/10216/115994/2/291544.pdf. Accessed August 20, 2021.
Basar, S., Ali, M., Ochoa-Ruiz, G., Zareei, M., Waheed, A., & Adnan, A. (2020). Unsupervised colour image segmentation: A case of RGB histogram based K-means clustering initialization. Plos One, 15(10).
https://doi.org/10.1371/journal.pone.0240015
Brahimi, M., Boukhalfa, K., & Moussaoui, A. (2017). Deep learning for tomato diseases: Classification and symptoms visualization. Appl. Artif. Intell., 31(4), 299-315.
https://doi.org/10.1080/08839514.2017.1315516
Chen, J., Chen, J., Zhang, D., Sun, Y., & Nanehkaran, Y. A. (2020). Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric., 173(105393).
https://doi.org/10.1016/j.compag.2020.105393
Claes, W., Per, R., Martin, H., Magnus, C., Björn, R., & Wesslén, A. (2000). Experimentation in software engineering: an introduction. Berlin Heidelberg, eBook: Springer-Verlag.
Cook, D., Feuz, K. D., & Krishnan, N. C. (2013). Transfer learning for activity recognition: A survey. Knowl. Inf. Syst., 36(3), 537-556.
https://doi.org/10.1007/s10115-013-0665-3
Deng, C., Ji, X., Rainey, C., Zhang, J., & Lu, W. (2020). Integrating machine learning with human knowledge. iScience, 23(11), 101656.
https://doi.org/10.1016/j.isci.2020.101656
Duong, L. T., Nguyen, P. T., Di Sipio, C., & Di Ruscio, D. (2020). Automated fruit recognition using EfficientNet and MixNet. Comput. Electron. Agric., 171(105326).
https://doi.org/10.1016/j.compag.2020.105326
Dzitac, S., Badea, G., & Meianu, D. (2022). Smart Agriculture: IoT-based Greenhouse Monitoring System. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL., 17(6).
https://doi.org/10.15837/ijccc.2022.6.5039
Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric., 145, 311-318.
https://doi.org/10.1016/j.compag.2018.01.009
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
Gama, J., Žliobait˙e, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Comput. Surv., 46(4), 1-37.
https://doi.org/10.1145/2523813
Gandhi, M., Kamdar, J., & Shah, M. (2020). Preprocessing of non-symmetrical images for edge detection. Augment. Hum. Res., 5(1).
https://doi.org/10.1007/s41133-019-0030-5
Gao, T., & Lu, W. (2020). Physical model and machine learning enabled electrolyte channel design for fast charging. J. Electrochem. Soc., 167(11), 110519.
https://doi.org/10.1149/1945-7111/aba096
Gaston, K. J., & Neill, M. A. (2004). Automated species identification: why not? Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, 655-667.
https://doi.org/10.1098/rstb.2003.1442
Gerhards, R., & Christensen, S. (2003). Real-time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley: Patch spraying. Weed Res., 43(6), 385-392.
https://doi.org/10.1046/j.1365-3180.2003.00349.x
Grinblat, G. L., Uzal, L. C., Larese, M. G., & Granitto, P. M. (2016). Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric., 127, 418-424.
https://doi.org/10.1016/j.compag.2016.07.003
Guha, et al. (2021). How artificial intelligence will affect the future of retailing. J. Retail., 97(1), 28-41.
https://doi.org/10.1016/j.jretai.2021.01.005
Hang, J., Zhang, D., Chen, P., Zhang, J., & Wang, B. (2019). Classification of plant leaf diseases based on improved convolutional neural network. Sensors (Basel), 19(19), 4161.
https://doi.org/10.3390/s19194161
Hassan, S. M., Maji, A. K., Jasiński, M., Leonowicz, Z., & Jasińska, E. (2021). Identification of plant-leaf diseases using CNN and transfer-learning approach. Electronics (Basel), 10(12), 1388.
https://doi.org/10.3390/electronics10121388
Dun-Chun, J. J., Burdon, L.-H., & Xie, Z. H. A. N. (2021). Triple bottom-line consideration of sustainable plant disease management: From economic, sociological and ecological perspectives. Journal of Integrative Agriculture, 20(10), 2581-2591.
https://doi.org/10.1016/S2095-3119(21)63627-4
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
https://doi.org/10.1109/CVPR.2016.90
He, K., Zhang, X., Ren, S., & Sun, J. (2017). Deep Residual Learning for Image Recognition. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.
https://doi.org/10.1109/CVPR.2016.90
Hernandez, N., Lundström, J., Favela, J., McChesney, I., & Arnrich, B. (2020). Literature review on transfer learning for human activity recognition using mobile and wearable devices with environmental technology. SN Computer Science, 1(2).
https://doi.org/10.1007/s42979-020-0070-4
Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.
https://doi.org/10.1126/science.1127647
Horaisová, K., & Kukal, J. (2016). Leaf classification from binary image via artificial intelligence. Biosyst. Eng., 142, 83-100.
https://doi.org/10.1016/j.biosystemseng.2015.12.007
Howard, G., et al. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv [cs.CV].
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
https://doi.org/10.1109/CVPR.2017.243
(CVPR).
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2016). Densely connected convolutional networks. arXiv [cs.CV].
https://doi.org/10.1109/CVPR.2017.243
Hubel, D. H., & Wiesel, T. N. (1959). Receptive Fields of single neuronsin the cat's striate cortex. J. Physiol, 148(3), 574-591.
https://doi.org/10.1113/jphysiol.1959.sp006308
Husin, Z., et al. (2012). Embedded portable device for herb leaves recognition using image processing techniques and neural network algorithm. Comput. Electron. Agric., 89, 18-29.
https://doi.org/10.1016/j.compag.2012.07.009
Jadhav, S. B., Udupi, V. R., & Patil, S. B. (2021). Identification of plant diseases using convolutional neural networks. Int. J. Inf. Technol., 13(6), 2461-2470.
https://doi.org/10.1007/s41870-020-00437-5
Jani, K., Chaudhuri, M., Patel, H., & Shah, M. (2020). Machine learning in films: an approach towards automation in film censoring. J. of Data, Inf. and Manag., 2(1), 55-64.
https://doi.org/10.1007/s42488-019-00016-9
Jennings, N., Parsons, S., & Pocock, M. J. O. (2008). Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks. Can. J. Zool., 86(5), 371-377.
https://doi.org/10.1139/Z08-009
Ji, M., Zhang, L., & Wu, Q. (2020). Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks. Inf. Process. Agric., 7(3), 418-426.
https://doi.org/10.1016/j.inpa.2019.10.003
Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Comput. Electron. Agric., 147, 70-90.
https://doi.org/10.1016/j.compag.2018.02.016
Karmokar, A. C., Ullah, M. S., Siddiquee, M. K., & Alam, K. M. R. (2015). Tea leaf diseases recognition using neural network ensemble. International Journal of Computer Applications, (17).
Kaur, S., Pandey, S., & Goel, S. (2018). Semi-automatic leaf disease detection and classification system for soybean culture. IET Image Process., 12(6), 1038-1048.
https://doi.org/10.1049/iet-ipr.2017.0822
Kaya, A., Keceli, A. S., Catal, C., Yalic, H. Y., Temucin, H., & Tekinerdogan, B. (2019). Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric., 158, 20-29.
https://doi.org/10.1016/j.compag.2019.01.041
Khan, A. S., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev., 53(8), 5455-5516.
https://doi.org/10.1007/s10462-020-09825-6
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Commun. ACM, 60(6), 84-90.
https://doi.org/10.1145/3065386
Kundalia, K., Patel, Y., & Shah, M. (2020). Multi-label movie genre detection from a movie poster using knowledge transfer learning. Augment. Hum. Res., 5(1).
https://doi.org/10.1007/s41133-019-0029-y
Kwon, Y., Kang, K., & Bae, C. (2014). Unsupervised learning for human activity recognition using smartphone sensors. Expert Syst. Appl., 41(14), 6067-6074.
https://doi.org/10.1016/j.eswa.2014.04.037
Lacasta, J., et al. (2018). Agricultural recommendation system for crop protection. Comput. Electron. Agric., 152, 82-89.
https://doi.org/10.1016/j.compag.2018.06.049
Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2017). How deep learning extracts and learns leaf features for plant classification. Pattern Recognit., 71, 1-13.
https://doi.org/10.1016/j.patcog.2017.05.015
Liu, B., Ding, Z., Tian, L., He, D., Li, S., & Wang, H. (2020). Grape leaf disease identification using improved deep convolutional neural networks. Frontiers in Plant Science, 11, 1082.
https://doi.org/10.3389/fpls.2020.01082
Maekawa, T., et al. (2016). Toward practical factory activity recognition: Unsupervised understanding of repetitive assembly work in a factory. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.
https://doi.org/10.1145/2971648.2971721
Miaomiao, J., Zhang, L., & Wu, Q. (2020). Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks. Information Processing in Agriculture, 7(3), 418-426.
https://doi.org/10.1016/j.inpa.2019.10.003
Saleem, M. H., et al. (2020). Image-based plant disease identification by deep learning metaarchitectures. Plants, 9(11), 1451.
https://doi.org/10.3390/plants9111451
Neubauer, A. C. (2021). The future of intelligence research in the coming age of artificial intelligence-With a special consideration of the philosophical movements of trans-and posthumanism. Intelligence, 87.
https://doi.org/10.1016/j.intell.2021.101563
Oyewola, O., Dada, E. G., Misra, S., & Damaševičius, R. (2021). Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing. PeerJ Comput. Sci., 7(e352).
https://doi.org/10.7717/peerj-cs.352
Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 22(10), 1345-1359.
https://doi.org/10.1109/TKDE.2009.191
Pan, Y. (2016). Heading toward artificial intelligence 2.0. Engineering (Beijing), 2(4), 409-413.
https://doi.org/10.1016/J.ENG.2016.04.018
Parekh, V., Shah, D., & Shah, M. (2020). Fatigue detection using artificial intelligence framework. Augment. Hum. Res., 5(1).
https://doi.org/10.1007/s41133-019-0023-4
Patel, D., Shah, D., & Shah, M. (2020). The intertwine of brain and body: A quantitative analysis on how big data influences the system of sports. Ann. Data Sci., 7(1), 1-16.
https://doi.org/10.1007/s40745-019-00239-y
Patil, J. K., & Kumar, R. (2012). Feature extraction of diseased leaf images. Journal of signal and image processing, 3(1), 60-63.
Patil, S. B., & Bodhe, S. K. (2011). Leaf disease severity measurement using image processing. International Journal of Engineering and Technology, 3(5), 297-301.
Pelau, D.-C., Dabija, D., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Comput. Human Behav., 122, 106855.
https://doi.org/10.1016/j.chb.2021.106855
Pydipati, R., Burks, T. F., & Lee, W. S. (2006). Identification of citrus disease using color texture features and discriminant analysis. Comput. Electron. Agric., 52(1-2), 49-59.
https://doi.org/10.1016/j.compag.2006.01.004
Qiang, Y., & Pan, S. J. (2010). A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 22(10), 1345-1359.
https://doi.org/10.1109/TKDE.2009.191
Rahm, L. (2021). Education, automation and AI: a genealogy of alternative futures. Learn. Media Technol., 1-19.
https://doi.org/10.1080/17439884.2021.1977948
Rawassizadeh, R., Price, B. A., & Petre, M. (2015). Wearables: Has the age of smartwatches finally arrived? Commun. ACM, 58(1), 45-47.
https://doi.org/10.1145/2629633
Razak, S. M., & Jafarpour, B. (2020). Convolutional neural networks (CNN) for feature-based model calibration under uncertain geologic scenarios. Computational Geosciences, 24(4), 1625- 1649.
https://doi.org/10.1007/s10596-020-09971-4
Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W., & Plümer, L. (2010). Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric., 74(1), 91-99.
https://doi.org/10.1016/j.compag.2010.06.009
Russakovsky, O., et al. (2015). ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3), 211-252.
https://doi.org/10.1007/s11263-015-0816-y
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2019). MobileNetV2: Inverted Residuals and Linear Bottlenecks, The IEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4510-4520.
https://doi.org/10.1109/CVPR.2018.00474
Sarker, I. H., Hoque, M. M., Uddin, M. K., & Alsanoosy, T. (2021). Mobile data science and intelligent apps: Concepts, AI-based modeling and research directions. Mob. Netw. Appl., 26(1), 285-303.
https://doi.org/10.1007/s11036-020-01650-z
Seiter, A., Chiu, W.-C., Fritz, M., Amft, O., & Troster, G. (2015). Joint segmentation and activity discovery using semantic and temporal priors. In 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom).
https://doi.org/10.1109/PERCOM.2015.7146511
Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Comput Sci, 2(3), 160.
https://doi.org/10.1007/s42979-021-00592-x
Senior, W., et al. (2020). Improved protein structure prediction using potentials from deep learning. Nature, 577(7792), 706-710.
https://doi.org/10.1038/s41586-019-1923-7
Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience, 2016.
https://doi.org/10.1155/2016/3289801
Umit, A., Murat, U., Kemal, A., Emne, U. (2021). Plant leaf disease classification using EfficientNet deep learning model. Ecological Informatics, 61, 101182. https://doi.org/10.1016/ j.ecoinf.2020.101182.
https://doi.org/10.1016/j.ecoinf.2020.101182
Vrejoiu, M. H. (2019). Reţele neuronale convoluţionale, Big Data şi Deep Learning în analiza automată de imagini. Rev. română inform. şi autom., 29(1), 91-114.
https://doi.org/10.33436/v29i1y201909
Wang, G., Sun, Y., & Wang, J. (2017). Automatic image-based plant disease severity estimation using deep learning. Computational intelligence and neuroscience, 2017.
https://doi.org/10.1155/2017/2917536
Weiss, J., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. J. Big Data, 3(1).
https://doi.org/10.1186/s40537-016-0043-6
Wilkinson, D., et al. (2016). The fair guiding principles for scientific data management and stewardship. Scientif. Data, 3.
https://doi.org/10.1038/sdata.2016.18
Yousefi, M., Baleghi, Y., & Sakhaei, S. M. (2017). Rotation invariant wavelet descriptors, a new set of features to enhance plant leaves classification. Comput. Electron. Agric., 140, 70-76.
https://doi.org/10.1016/j.compag.2017.05.031
Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
https://doi.org/10.1109/CVPR.2018.00716
Zhou, S. K., et al. (2003). Particle swarm optimization (PSO) algorithm. Application Research of Computers, 12, 7-11.
Zhou, S. K., et al. (2021). A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE Inst. Electr. Electron. Eng., 109(5), 820-838.
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Rodica Sobolu, Liana Stanca, Simona Aurelia Bodog
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.