Automated Recognition Systems: Theoretical and Practical Implementation of Active Learning for Extracting Knowledge in Image-based Transfer Learning of Living Organisms

Authors

  • Rodica Sobolu Faculty of Forestry and Land Survey, University of Agricultural Sciences & Veterinary Medicine, Cluj-Napoca, Romania
  • Liana Stanca Business Information Systems Department, Babes-Bolyai University, Cluj-Napoca, Romania
  • Simona Aurelia Bodog Faculty of Economic Sciences, University of Oradea, Romania

DOI:

https://doi.org/10.15837/ijccc.2023.6.5728

Keywords:

articial intelligence, Machine Learning, Human Activity Recognition (HAR), Multi-Layer Perceptron (MLP)., Learning by transfer

Abstract

In our research, we propose a model that leverages transfer learning and active learning techniques to accumulate knowledge and effectively solve complex problems in the field of artificial intelligence. This model operates within a parallel learning paradigm, aiming to mimic the continuous learning and improvement observed in human beings. To facilitate knowledge accumulation, we introduce a convolutional deep classification auto encoder that extracts spatially localized features from images. This enhances the model’s ability to extract relevant information. Additionally, we propose a learning classification system based on a code fragment, enabling effective representation and transfer of knowledge across different domains. Our research culminates in a theoretical and practical prototype for active learning-based knowledge extraction in various living organisms, including humans, plants, and animals. This knowledge extraction is achieved through image-based learning transfer, focusing on advancing activity recognition in image processing. Experimental results confirm that our method outperforms both baseline approaches and state-of-the-art convolutional neural network methods, underscoring its effectiveness and potential.

References

Agarwal, G., et al. (2006). First steps toward an electronic field guide for plants. Taxon, 55(3),a97-610.

https://doi.org/10.2307/25065637

Alaloul, W. S., & Qureshi, A. H. (2020). Data processing using artificial neural network. In Dynamic Data Assimilation-Beating the Uncertainties.

Al-Hiary, H., Bani-Ahmad, S., Reyalat, M., Braik, M., & Alrahamneh, Z. (2011). Fast and accurate detection and classification of plant diseases. International Journal of Computer Applications, 17(1), 31-38.

https://doi.org/10.5120/2183-2754

Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). Plant leaf disease classification using Efficient- Net deep learning model. Ecol. Inform., 61, 101182.

https://doi.org/10.1016/j.ecoinf.2020.101182

Barbosa, P. (2018). Human Activities Recognition: A Transfer Learning Approach. Available online at https://repositorio-aberto.up.pt/bitstream/10216/115994/2/291544.pdf. Accessed August 20, 2021.

Basar, S., Ali, M., Ochoa-Ruiz, G., Zareei, M., Waheed, A., & Adnan, A. (2020). Unsupervised colour image segmentation: A case of RGB histogram based K-means clustering initialization. Plos One, 15(10).

https://doi.org/10.1371/journal.pone.0240015

Brahimi, M., Boukhalfa, K., & Moussaoui, A. (2017). Deep learning for tomato diseases: Classification and symptoms visualization. Appl. Artif. Intell., 31(4), 299-315.

https://doi.org/10.1080/08839514.2017.1315516

Chen, J., Chen, J., Zhang, D., Sun, Y., & Nanehkaran, Y. A. (2020). Using deep transfer learning for image-based plant disease identification. Comput. Electron. Agric., 173(105393).

https://doi.org/10.1016/j.compag.2020.105393

Claes, W., Per, R., Martin, H., Magnus, C., Björn, R., & Wesslén, A. (2000). Experimentation in software engineering: an introduction. Berlin Heidelberg, eBook: Springer-Verlag.

Cook, D., Feuz, K. D., & Krishnan, N. C. (2013). Transfer learning for activity recognition: A survey. Knowl. Inf. Syst., 36(3), 537-556.

https://doi.org/10.1007/s10115-013-0665-3

Deng, C., Ji, X., Rainey, C., Zhang, J., & Lu, W. (2020). Integrating machine learning with human knowledge. iScience, 23(11), 101656.

https://doi.org/10.1016/j.isci.2020.101656

Duong, L. T., Nguyen, P. T., Di Sipio, C., & Di Ruscio, D. (2020). Automated fruit recognition using EfficientNet and MixNet. Comput. Electron. Agric., 171(105326).

https://doi.org/10.1016/j.compag.2020.105326

Dzitac, S., Badea, G., & Meianu, D. (2022). Smart Agriculture: IoT-based Greenhouse Monitoring System. INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL., 17(6).

https://doi.org/10.15837/ijccc.2022.6.5039

Ferentinos, K. P. (2018). Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric., 145, 311-318.

https://doi.org/10.1016/j.compag.2018.01.009

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Gama, J., Žliobait˙e, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey on concept drift adaptation. ACM Comput. Surv., 46(4), 1-37.

https://doi.org/10.1145/2523813

Gandhi, M., Kamdar, J., & Shah, M. (2020). Preprocessing of non-symmetrical images for edge detection. Augment. Hum. Res., 5(1).

https://doi.org/10.1007/s41133-019-0030-5

Gao, T., & Lu, W. (2020). Physical model and machine learning enabled electrolyte channel design for fast charging. J. Electrochem. Soc., 167(11), 110519.

https://doi.org/10.1149/1945-7111/aba096

Gaston, K. J., & Neill, M. A. (2004). Automated species identification: why not? Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, 655-667.

https://doi.org/10.1098/rstb.2003.1442

Gerhards, R., & Christensen, S. (2003). Real-time weed detection, decision making and patch spraying in maize, sugarbeet, winter wheat and winter barley: Patch spraying. Weed Res., 43(6), 385-392.

https://doi.org/10.1046/j.1365-3180.2003.00349.x

Grinblat, G. L., Uzal, L. C., Larese, M. G., & Granitto, P. M. (2016). Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric., 127, 418-424.

https://doi.org/10.1016/j.compag.2016.07.003

Guha, et al. (2021). How artificial intelligence will affect the future of retailing. J. Retail., 97(1), 28-41.

https://doi.org/10.1016/j.jretai.2021.01.005

Hang, J., Zhang, D., Chen, P., Zhang, J., & Wang, B. (2019). Classification of plant leaf diseases based on improved convolutional neural network. Sensors (Basel), 19(19), 4161.

https://doi.org/10.3390/s19194161

Hassan, S. M., Maji, A. K., Jasiński, M., Leonowicz, Z., & Jasińska, E. (2021). Identification of plant-leaf diseases using CNN and transfer-learning approach. Electronics (Basel), 10(12), 1388.

https://doi.org/10.3390/electronics10121388

Dun-Chun, J. J., Burdon, L.-H., & Xie, Z. H. A. N. (2021). Triple bottom-line consideration of sustainable plant disease management: From economic, sociological and ecological perspectives. Journal of Integrative Agriculture, 20(10), 2581-2591.

https://doi.org/10.1016/S2095-3119(21)63627-4

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

https://doi.org/10.1109/CVPR.2016.90

He, K., Zhang, X., Ren, S., & Sun, J. (2017). Deep Residual Learning for Image Recognition. MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.

https://doi.org/10.1109/CVPR.2016.90

Hernandez, N., Lundström, J., Favela, J., McChesney, I., & Arnrich, B. (2020). Literature review on transfer learning for human activity recognition using mobile and wearable devices with environmental technology. SN Computer Science, 1(2).

https://doi.org/10.1007/s42979-020-0070-4

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507.

https://doi.org/10.1126/science.1127647

Horaisová, K., & Kukal, J. (2016). Leaf classification from binary image via artificial intelligence. Biosyst. Eng., 142, 83-100.

https://doi.org/10.1016/j.biosystemseng.2015.12.007

Howard, G., et al. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv [cs.CV].

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition

https://doi.org/10.1109/CVPR.2017.243

(CVPR).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2016). Densely connected convolutional networks. arXiv [cs.CV].

https://doi.org/10.1109/CVPR.2017.243

Hubel, D. H., & Wiesel, T. N. (1959). Receptive Fields of single neuronsin the cat's striate cortex. J. Physiol, 148(3), 574-591.

https://doi.org/10.1113/jphysiol.1959.sp006308

Husin, Z., et al. (2012). Embedded portable device for herb leaves recognition using image processing techniques and neural network algorithm. Comput. Electron. Agric., 89, 18-29.

https://doi.org/10.1016/j.compag.2012.07.009

Jadhav, S. B., Udupi, V. R., & Patil, S. B. (2021). Identification of plant diseases using convolutional neural networks. Int. J. Inf. Technol., 13(6), 2461-2470.

https://doi.org/10.1007/s41870-020-00437-5

Jani, K., Chaudhuri, M., Patel, H., & Shah, M. (2020). Machine learning in films: an approach towards automation in film censoring. J. of Data, Inf. and Manag., 2(1), 55-64.

https://doi.org/10.1007/s42488-019-00016-9

Jennings, N., Parsons, S., & Pocock, M. J. O. (2008). Human vs. machine: identification of bat species from their echolocation calls by humans and by artificial neural networks. Can. J. Zool., 86(5), 371-377.

https://doi.org/10.1139/Z08-009

Ji, M., Zhang, L., & Wu, Q. (2020). Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks. Inf. Process. Agric., 7(3), 418-426.

https://doi.org/10.1016/j.inpa.2019.10.003

Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Comput. Electron. Agric., 147, 70-90.

https://doi.org/10.1016/j.compag.2018.02.016

Karmokar, A. C., Ullah, M. S., Siddiquee, M. K., & Alam, K. M. R. (2015). Tea leaf diseases recognition using neural network ensemble. International Journal of Computer Applications, (17).

Kaur, S., Pandey, S., & Goel, S. (2018). Semi-automatic leaf disease detection and classification system for soybean culture. IET Image Process., 12(6), 1038-1048.

https://doi.org/10.1049/iet-ipr.2017.0822

Kaya, A., Keceli, A. S., Catal, C., Yalic, H. Y., Temucin, H., & Tekinerdogan, B. (2019). Analysis of transfer learning for deep neural network based plant classification models. Comput. Electron. Agric., 158, 20-29.

https://doi.org/10.1016/j.compag.2019.01.041

Khan, A. S., Zahoora, U., & Qureshi, A. S. (2020). A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev., 53(8), 5455-5516.

https://doi.org/10.1007/s10462-020-09825-6

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Commun. ACM, 60(6), 84-90.

https://doi.org/10.1145/3065386

Kundalia, K., Patel, Y., & Shah, M. (2020). Multi-label movie genre detection from a movie poster using knowledge transfer learning. Augment. Hum. Res., 5(1).

https://doi.org/10.1007/s41133-019-0029-y

Kwon, Y., Kang, K., & Bae, C. (2014). Unsupervised learning for human activity recognition using smartphone sensors. Expert Syst. Appl., 41(14), 6067-6074.

https://doi.org/10.1016/j.eswa.2014.04.037

Lacasta, J., et al. (2018). Agricultural recommendation system for crop protection. Comput. Electron. Agric., 152, 82-89.

https://doi.org/10.1016/j.compag.2018.06.049

Lee, S. H., Chan, C. S., Mayo, S. J., & Remagnino, P. (2017). How deep learning extracts and learns leaf features for plant classification. Pattern Recognit., 71, 1-13.

https://doi.org/10.1016/j.patcog.2017.05.015

Liu, B., Ding, Z., Tian, L., He, D., Li, S., & Wang, H. (2020). Grape leaf disease identification using improved deep convolutional neural networks. Frontiers in Plant Science, 11, 1082.

https://doi.org/10.3389/fpls.2020.01082

Maekawa, T., et al. (2016). Toward practical factory activity recognition: Unsupervised understanding of repetitive assembly work in a factory. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing.

https://doi.org/10.1145/2971648.2971721

Miaomiao, J., Zhang, L., & Wu, Q. (2020). Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks. Information Processing in Agriculture, 7(3), 418-426.

https://doi.org/10.1016/j.inpa.2019.10.003

Saleem, M. H., et al. (2020). Image-based plant disease identification by deep learning metaarchitectures. Plants, 9(11), 1451.

https://doi.org/10.3390/plants9111451

Neubauer, A. C. (2021). The future of intelligence research in the coming age of artificial intelligence-With a special consideration of the philosophical movements of trans-and posthumanism. Intelligence, 87.

https://doi.org/10.1016/j.intell.2021.101563

Oyewola, O., Dada, E. G., Misra, S., & Damaševičius, R. (2021). Detecting cassava mosaic disease using a deep residual convolutional neural network with distinct block processing. PeerJ Comput. Sci., 7(e352).

https://doi.org/10.7717/peerj-cs.352

Pan, S. J., & Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 22(10), 1345-1359.

https://doi.org/10.1109/TKDE.2009.191

Pan, Y. (2016). Heading toward artificial intelligence 2.0. Engineering (Beijing), 2(4), 409-413.

https://doi.org/10.1016/J.ENG.2016.04.018

Parekh, V., Shah, D., & Shah, M. (2020). Fatigue detection using artificial intelligence framework. Augment. Hum. Res., 5(1).

https://doi.org/10.1007/s41133-019-0023-4

Patel, D., Shah, D., & Shah, M. (2020). The intertwine of brain and body: A quantitative analysis on how big data influences the system of sports. Ann. Data Sci., 7(1), 1-16.

https://doi.org/10.1007/s40745-019-00239-y

Patil, J. K., & Kumar, R. (2012). Feature extraction of diseased leaf images. Journal of signal and image processing, 3(1), 60-63.

Patil, S. B., & Bodhe, S. K. (2011). Leaf disease severity measurement using image processing. International Journal of Engineering and Technology, 3(5), 297-301.

Pelau, D.-C., Dabija, D., & Ene, I. (2021). What makes an AI device human-like? The role of interaction quality, empathy and perceived psychological anthropomorphic characteristics in the acceptance of artificial intelligence in the service industry. Comput. Human Behav., 122, 106855.

https://doi.org/10.1016/j.chb.2021.106855

Pydipati, R., Burks, T. F., & Lee, W. S. (2006). Identification of citrus disease using color texture features and discriminant analysis. Comput. Electron. Agric., 52(1-2), 49-59.

https://doi.org/10.1016/j.compag.2006.01.004

Qiang, Y., & Pan, S. J. (2010). A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 22(10), 1345-1359.

https://doi.org/10.1109/TKDE.2009.191

Rahm, L. (2021). Education, automation and AI: a genealogy of alternative futures. Learn. Media Technol., 1-19.

https://doi.org/10.1080/17439884.2021.1977948

Rawassizadeh, R., Price, B. A., & Petre, M. (2015). Wearables: Has the age of smartwatches finally arrived? Commun. ACM, 58(1), 45-47.

https://doi.org/10.1145/2629633

Razak, S. M., & Jafarpour, B. (2020). Convolutional neural networks (CNN) for feature-based model calibration under uncertain geologic scenarios. Computational Geosciences, 24(4), 1625- 1649.

https://doi.org/10.1007/s10596-020-09971-4

Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W., & Plümer, L. (2010). Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance. Comput. Electron. Agric., 74(1), 91-99.

https://doi.org/10.1016/j.compag.2010.06.009

Russakovsky, O., et al. (2015). ImageNet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3), 211-252.

https://doi.org/10.1007/s11263-015-0816-y

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2019). MobileNetV2: Inverted Residuals and Linear Bottlenecks, The IEE Conference on Computer Vision and Pattern Recognition (CVPR). pp. 4510-4520.

https://doi.org/10.1109/CVPR.2018.00474

Sarker, I. H., Hoque, M. M., Uddin, M. K., & Alsanoosy, T. (2021). Mobile data science and intelligent apps: Concepts, AI-based modeling and research directions. Mob. Netw. Appl., 26(1), 285-303.

https://doi.org/10.1007/s11036-020-01650-z

Seiter, A., Chiu, W.-C., Fritz, M., Amft, O., & Troster, G. (2015). Joint segmentation and activity discovery using semantic and temporal priors. In 2015 IEEE International Conference on Pervasive Computing and Communications (PerCom).

https://doi.org/10.1109/PERCOM.2015.7146511

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and research directions. SN Comput Sci, 2(3), 160.

https://doi.org/10.1007/s42979-021-00592-x

Senior, W., et al. (2020). Improved protein structure prediction using potentials from deep learning. Nature, 577(7792), 706-710.

https://doi.org/10.1038/s41586-019-1923-7

Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks based recognition of plant diseases by leaf image classification. Computational intelligence and neuroscience, 2016.

https://doi.org/10.1155/2016/3289801

Umit, A., Murat, U., Kemal, A., Emne, U. (2021). Plant leaf disease classification using EfficientNet deep learning model. Ecological Informatics, 61, 101182. https://doi.org/10.1016/ j.ecoinf.2020.101182.

https://doi.org/10.1016/j.ecoinf.2020.101182

Vrejoiu, M. H. (2019). Reţele neuronale convoluţionale, Big Data şi Deep Learning în analiza automată de imagini. Rev. română inform. şi autom., 29(1), 91-114.

https://doi.org/10.33436/v29i1y201909

Wang, G., Sun, Y., & Wang, J. (2017). Automatic image-based plant disease severity estimation using deep learning. Computational intelligence and neuroscience, 2017.

https://doi.org/10.1155/2017/2917536

Weiss, J., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. J. Big Data, 3(1).

https://doi.org/10.1186/s40537-016-0043-6

Wilkinson, D., et al. (2016). The fair guiding principles for scientific data management and stewardship. Scientif. Data, 3.

https://doi.org/10.1038/sdata.2016.18

Yousefi, M., Baleghi, Y., & Sakhaei, S. M. (2017). Rotation invariant wavelet descriptors, a new set of features to enhance plant leaves classification. Comput. Electron. Agric., 140, 70-76.

https://doi.org/10.1016/j.compag.2017.05.031

Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). ShuffleNet: An extremely efficient convolutional neural network for mobile devices. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

https://doi.org/10.1109/CVPR.2018.00716

Zhou, S. K., et al. (2003). Particle swarm optimization (PSO) algorithm. Application Research of Computers, 12, 7-11.

Zhou, S. K., et al. (2021). A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and future promises. Proc. IEEE Inst. Electr. Electron. Eng., 109(5), 820-838.

https://doi.org/10.1109/JPROC.2021.3054390

Additional Files

Published

2023-10-30

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.