Transforming Financial Decision-Making: The Interplay of AI, Cloud Computing and Advanced Data Management Technologies

Authors

  • Sergiu-Alexandru Ionescu Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Romania
  • Vlad Diaconita Department of Economic Informatics and Cybernetics, Bucharest University of Economic Studies, Romania

DOI:

https://doi.org/10.15837/ijccc.2023.6.5735

Keywords:

Data Management Technologies, Blockchain, Artificial Intelligence, Decision Support, Cloud Computing

Abstract

Financial institutions face many challenges in managing modern financial transactions and vast data volumes. To overcome these challenges, they are increasingly harnessing advanced data man- agement technologies such as artificial intelligence and cloud computing. This paper presents a com- prehensive review of how these tools transform financial decision-making in various domains and ap- plications. We analyzed both foundational and recent advancements using a rigorous methodology based on the PRISMA 2020 guideline. Our findings indicate that many major financial institutions are adopting AI-driven solutions to potentially enhance real-time risk assessment, transactional efficiency, and predictive analytics. While they bring benefits like faster decision-making and reduced operational costs, they also pose challenges like data security and integration complexities that require further research and development. Looking ahead, we envision a more integrated, responsive, and secure financial ecosystem that leverages the convergence of AI, cloud computing, and advanced data storage. This synthesis underscores the significance of contemporary data management solutions in shaping the future of data-driven financial services, offering a guideline for stakeholders in this evolving domain.

References

Hasan, Md.M.; Popp, J.; Oláh, J. (2020). Current landscape and influence of bign(w) data on finance, J Big Dat, vol. 7, no. 1, p. 21, 2020.

https://doi.org/10.1186/s40537-020-00291-z

Codd, E.F. (1983). A relational model of data for large shared data banks, Commun ACM, vol. 26, no. 1, pp. 64-69, 1983.

https://doi.org/10.1145/357980.358007

Inmon, W. (2008). Building the Data Warehouse 3rd Edition, Wiley.

White, T. (2012). Hadoop: The Definitive Guide, 3rd edition Commun ACM.

Zaharia, M. et al., (2016). Apache Spark Commun ACM, vol. 59, no. 11, pp. 56-65, 2016.

https://doi.org/10.1145/2934664

Weintraub, G. ;Gudes, E.; Dolev, S. (2021). Indexing cloud data lakes within the lakes Proceedings of the 14th ACM International Conference on Systems and Storage, vol. 59, no. 11, pp. 56-65, New York, NY, USA: ACM, 2021, pp. 1-1.

https://doi.org/10.1145/3456727.3463828

Grolinger, K. ;Higashino, W.A.; Tiwari, A.; Capretz M.A. (2013). Data management in cloud environments: NoSQL and NewSQL data stores Journal of Cloud Computing: Advances, Systems and Applications, vol. 2, no. 1, p. 22, 2013.

https://doi.org/10.1186/2192-113X-2-22

Kato, K. ;Takefusa, A. ; Tiwari, A.; Nakada H.; Oguchi M. (2018). A Study of a Scalable Distributed Stream Processing Infrastructure Using Ray and Apache Kafka International Conference on Big Data (Big Data), IEEE, pp. 5351-5353, 2018.

https://doi.org/10.1109/BigData.2018.8622415

Dinh, T. T. A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., Wang, J. (2018). Untangling blockchain: A data processing view of blockchain systems. IEEE transactions on knowledge and data engineering, vol. 30, no. 7, pp. 1366-1385, 2018

https://doi.org/10.1109/TKDE.2017.2781227

Castonguay, J. J., Stein Smith, S. (2020). Digital Assets and Blockchain: Hackable, Fraudulent, or Just Misunderstood. IEEE transactions on knowledge and data engineering, vol. 19, no. 4, pp. 363-387, 2020

https://doi.org/10.1111/1911-3838.12242

Page, M. J., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, p. n71, 2021

https://doi.org/10.1136/bmj.n71

Copeland, B. J.,Sommaruga, G. (2015). The Stored-Program Universal Computer: Did Zuse Anticipate Turing and von Neumann? Turing's Revolution, Cham: Springer International Publishing, pp. 43-101, 2015

https://doi.org/10.1007/978-3-319-22156-4_3

Ceruzzi, P., Aspray W. (2003). A History of Modern Computing, second edition (History of Computing) MIT Press, 2003

Oakley, B., Kenneth, O. (1990). Britain's Strategic Computing Initiative. MIT Press, 1990

Chamberlin, D. D. (2012). Early history of SQL IEEE Annals of the History of Computing, vol. 34, no. 4, pp. 78-82, 2012

https://doi.org/10.1109/MAHC.2012.61

Chamberlin, D. D., Boyce, R. F. (1976). SEQUEL: A structured English query language Proceedings of the 1976 ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control, pp. 249-264., 1976

https://doi.org/10.1145/800296.811515

Elmasri, R., Navathe, S.B.,Baydaoui J. (2013). Fundamental of Database Systems Seventh Edition. 2013.

Stonebraker, M. (2010). SQL databases v. NoSQL databases Communications of the ACM, vol. 53, no. 4, pp. 10-11, 2010

https://doi.org/10.1145/1721654.1721659

Gudivada, V. N., Rao, D., Raghavan, V. V. (2014) NoSQL Systems for Big Data Management EEE World Congress on Services, pp. 190-197, 2014

https://doi.org/10.1109/SERVICES.2014.42

Harter, T., et al. (2014) Analysis of HDFS under HBase: A Facebook messages case study Proceedings of the 12th USENIX Conference on File and Storage Technologies, FAST 2014

Zaharia, M., Chowdhury, M.,Stoica, I. (2012) Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing In 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12),pp. 2-2, 2012

Gandomi, A., Haider, M. (2015) Beyond the hype: Big data concepts, methods, and analytics International journal of information management, vol. 35, no. 2, pp. 137-144, 2015

https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Hicham, R., Anis, B. M. (2022) Processes meet Big Data: Scaling process discovery algorithms in Big Data environment Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, pp. 8478-8489, 2022

https://doi.org/10.1016/j.jksuci.2021.02.008

Varghese, B., Buyya, R. (2018) Next generation cloud computing: New trends and research directions Future Generation Computer Systems, vol. 79, pp. 849-861, 2018

https://doi.org/10.1016/j.future.2017.09.020

Ren, J., Zhang, D., He, S., Zhang, Y., Li, T. (2020). A Survey on End-Edge-Cloud Orchestrated Network Computing Paradigms ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1-36, 2020

https://doi.org/10.1145/3362031

Chen, X., Song, H., et al. (2021). Achieving low tail-latency and high scalability for serializable transactions in edge computing in Proceedings of the Sixteenth European Conference on Computer Systems, pp. 210-227, 2021

https://doi.org/10.1145/3447786.3456238

Filip, F.G. (2021). Automation and computers and their contribution to human well-being and resilience. Studies in Informatics and Control, vol. 30, no. 4, pp. 5-18, 2021

https://doi.org/10.24846/v30i4y202101

Filip, F.G. (2022). Collaborative Decision-Making: Concepts and Supporting Information and Communication Technology Tools and Systems International Journal of Computers Communications and Control, vol. 17, no. 2, 2022

https://doi.org/10.15837/ijccc.2022.2.4732

Luger, G.F. (2023). A Brief History and Foundations for Modern Artificial Intelligence International Journal of Semantic Computing, vol. 17, no. 01, pp. 143-170, 2023

https://doi.org/10.1142/S1793351X22500076

Duan, Y., Edwards, J.S., Dwivedi, Y.K. (2019) Artificial intelligence for decision making in the era of Big Data - evolution, challenges and research agenda International journal of information management, vol. 48, pp. 63-71, 2019

https://doi.org/10.1016/j.ijinfomgt.2019.01.021

Collins, C., Dennehy, D., Conboy, K., Mikalef P., (2021) Artificial intelligence in information systems research: A systematic literature review and research agenda International Journal of Information Management, vol. 60, p. 102383, 2021

https://doi.org/10.1016/j.ijinfomgt.2021.102383

Singh, G., Gehr, T., Püschel, M., Vechev, M. (2019) An abstract domain for certifying neural networks Proceedings of the ACM on Programming Languages, vol. 3, no. POPL, 2019

https://doi.org/10.1145/3290354

Ullah, N., Al-Rahmi, W. M., Alfarraj, O., Alalwan, N., Alzahrani, A. I., Ramayah, T., Kumar, V. (2022). Hybridizing cost saving with trust for blockchain technology adoption by financial institutions Telematics and Informatics Reports, vol. 6, p. 100008, 2022

https://doi.org/10.1016/j.teler.2022.100008

Nauta, M., Bucur, D., Seifert, C. (2019). Causal Discovery with Attention-Based Convolutional Neural Networks Machine Learning and Knowledge Extraction, vol. 1, no. 1, pp. 312-340, 2019

https://doi.org/10.3390/make1010019

Javaid, M., Haleem, A., Singh, R. P., Suman, R., Khan, S. (2022) A review of Blockchain Technology applications for financial services BenchCouncil Transactions on Benchmarks, Standards and Evaluations, vol. 2, no. 3, p. 100073, 2022

https://doi.org/10.1016/j.tbench.2022.100073

Mirestean, A., et al. (2021) Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance Departmental Papers, vol. 2021, no. 024, p. 1, 2021

https://doi.org/10.5089/9781589063952.087

Gul, R., Al-Faryan, M. A. S. (2023) From insights to impact: leveraging data analytics for data-driven decision-making and productivity in banking sector Humanities and Social Sciences Communications, vol. 10, no. 1, p. 660, 2023

https://doi.org/10.1057/s41599-023-02122-x

Sadalage, P., Fowler, M. (2012) NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence Vasa, 2012.

Anderson, J.C., Lehnardt, J., Slater, N. (2010) CouchDB: The Definitive Guide O'Reilly Media, Inc, 2010.

Kabakus, A. T, Kara, R. (2017). A performance evaluation of in-memory databases Journal of King Saud University-Computer and Information Sciences, vol. 29, no. 4, pp. 520-525, 2017

https://doi.org/10.1016/j.jksuci.2016.06.007

Bradshaw, S., Brazil, E., Chodorow, K. (2019). MongoDB: The Definitive Guide: Powerful and Scalabl Data Storage 3rd Edition, 2019

Lakshman, A., Malik, P. (2010). Cassandra: a decentralized structured storage system ACM SIGOPS operating systems review, pp. 1-6, 2010

https://doi.org/10.1145/1773912.1773922

Chevalier, M., Malki, M. E., Kopliku, A., Teste, O., Tournier, R. (2015). Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems In Advances in Databases and Information Systems: 19th East European Conference, pp. 79-91, 2015

https://doi.org/10.1007/978-3-319-23135-8_6

Halevy, A., Korn, F., Noy, N. F., Olston, C., Polyzotis, N., Roy, S., Whang, S. E. (2016) Goods: Organizing Google's Datasets in Proceedings of the 2016 International Conference on Management of Data, pp. 795-806, 2016

https://doi.org/10.1145/2882903.2903730

Plattner, H. (2009, June) A common database approach for OLTP and OLAP using an inmemory column database in Proceedings of the 2009 ACM SIGMOD International Conference on Management of data,pp. 1-2, 2009

https://doi.org/10.1145/1559845.1559846

Sikka, V., Färber, F., Goel, A., Lehner, W. (2013) SAP HANA: The evolution from a modern main-memory data platform to an enterprise application platform Proceedings of the VLDB Endowment, vol. 6, no. 11, pp. 1184-1185, 2013

https://doi.org/10.14778/2536222.2536251

Kaur, K., Sachdeva, M. (2017). Performance evaluation of NewSQL databases International Conference on Inventive Systems and Control (ICISC), pp. 1-5, 2017

https://doi.org/10.1109/ICISC.2017.8068585

Liu, F., et al. (2011). NIST cloud computing reference architecture NIST Special Publication, 2011

https://doi.org/10.6028/NIST.SP.500-292

Mell, P., Grance, T. (2011). The NIST definition of cloud computing NIST Special Publication, 2011

https://doi.org/10.6028/NIST.SP.800-145

Sultan, N. (2014). Making use of cloud computing for healthcare provision: Opportunities and challenges International Journal of Information Management, vol. 34, no. 2, pp. 177-184, 2014

https://doi.org/10.1016/j.ijinfomgt.2013.12.011

Zhang, Q., Cheng, L., Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7-18, 2010

https://doi.org/10.1007/s13174-010-0007-6

Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods Journal of business research, vol. 70, pp. 263-286, 2017

https://doi.org/10.1016/j.jbusres.2016.08.001

Dean, J., Ghemawat, S. (2008) MapReduce: simplified data processing on large clusters Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008

https://doi.org/10.1145/1327452.1327492

Armbrust, M., et al. (2015) Spark SQL: Relational Data Processing in Spark in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1383-1394., 2015

https://doi.org/10.1145/2723372.2742797

Miloslavskaya, N., Tolstoy, A. (2016). Big Data, Fast Data and Data Lake Concepts Procedia Computer Science, vol. 88, pp. 300-305, 2016

https://doi.org/10.1016/j.procs.2016.07.439

Filip, F.G. (2021) AI vs AI (Augmenting [Human] Intellect vs Artificial Intelligence) in 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), vp. 000011-000012, 2021

https://doi.org/10.1109/SACI51354.2021.9465578

Khargonekar, P.P., Dahleh, M.A. (2018). Advancing systems and control research in the era of ML and AI Annual Reviews in Control, vol. 45, pp. 1-4, 2018

https://doi.org/10.1016/j.arcontrol.2018.04.001

LeCun, Y., Bengio, Y., Hinton, G. (2015) Deep learning Nature, vol. 521, no. 7553, pp. 436-444, 2015

https://doi.org/10.1038/nature14539

March, S.T., Hevner, A.R. (2007) Integrated decision support systems: A data warehousing perspective Decision support systems, vol. 43, no. 3, pp. 1031-1043, 2007

https://doi.org/10.1016/j.dss.2005.05.029

Giarratano, J., Riley, G. (1998) Expert Systems: Principles and Programming Third Edition. Course Technology, 1998

Cobo, M.J., Martínez, M.Á., Gutiérrez-Salcedo, M., Fujita, H., Herrera-Viedma, E. (2015) 25 years at knowledge-based systems: a bibliometric analysis Knowledge-based systems, vol. 80, pp. 3-13, 2015

https://doi.org/10.1016/j.knosys.2014.12.035

Additional Files

Published

2023-10-30

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.