Transforming Financial Decision-Making: The Interplay of AI, Cloud Computing and Advanced Data Management Technologies
DOI:
https://doi.org/10.15837/ijccc.2023.6.5735Keywords:
Data Management Technologies, Blockchain, Artificial Intelligence, Decision Support, Cloud ComputingAbstract
Financial institutions face many challenges in managing modern financial transactions and vast data volumes. To overcome these challenges, they are increasingly harnessing advanced data man- agement technologies such as artificial intelligence and cloud computing. This paper presents a com- prehensive review of how these tools transform financial decision-making in various domains and ap- plications. We analyzed both foundational and recent advancements using a rigorous methodology based on the PRISMA 2020 guideline. Our findings indicate that many major financial institutions are adopting AI-driven solutions to potentially enhance real-time risk assessment, transactional efficiency, and predictive analytics. While they bring benefits like faster decision-making and reduced operational costs, they also pose challenges like data security and integration complexities that require further research and development. Looking ahead, we envision a more integrated, responsive, and secure financial ecosystem that leverages the convergence of AI, cloud computing, and advanced data storage. This synthesis underscores the significance of contemporary data management solutions in shaping the future of data-driven financial services, offering a guideline for stakeholders in this evolving domain.References
Hasan, Md.M.; Popp, J.; Oláh, J. (2020). Current landscape and influence of bign(w) data on finance, J Big Dat, vol. 7, no. 1, p. 21, 2020.
https://doi.org/10.1186/s40537-020-00291-z
Codd, E.F. (1983). A relational model of data for large shared data banks, Commun ACM, vol. 26, no. 1, pp. 64-69, 1983.
https://doi.org/10.1145/357980.358007
Inmon, W. (2008). Building the Data Warehouse 3rd Edition, Wiley.
White, T. (2012). Hadoop: The Definitive Guide, 3rd edition Commun ACM.
Zaharia, M. et al., (2016). Apache Spark Commun ACM, vol. 59, no. 11, pp. 56-65, 2016.
https://doi.org/10.1145/2934664
Weintraub, G. ;Gudes, E.; Dolev, S. (2021). Indexing cloud data lakes within the lakes Proceedings of the 14th ACM International Conference on Systems and Storage, vol. 59, no. 11, pp. 56-65, New York, NY, USA: ACM, 2021, pp. 1-1.
https://doi.org/10.1145/3456727.3463828
Grolinger, K. ;Higashino, W.A.; Tiwari, A.; Capretz M.A. (2013). Data management in cloud environments: NoSQL and NewSQL data stores Journal of Cloud Computing: Advances, Systems and Applications, vol. 2, no. 1, p. 22, 2013.
https://doi.org/10.1186/2192-113X-2-22
Kato, K. ;Takefusa, A. ; Tiwari, A.; Nakada H.; Oguchi M. (2018). A Study of a Scalable Distributed Stream Processing Infrastructure Using Ray and Apache Kafka International Conference on Big Data (Big Data), IEEE, pp. 5351-5353, 2018.
https://doi.org/10.1109/BigData.2018.8622415
Dinh, T. T. A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., Wang, J. (2018). Untangling blockchain: A data processing view of blockchain systems. IEEE transactions on knowledge and data engineering, vol. 30, no. 7, pp. 1366-1385, 2018
https://doi.org/10.1109/TKDE.2017.2781227
Castonguay, J. J., Stein Smith, S. (2020). Digital Assets and Blockchain: Hackable, Fraudulent, or Just Misunderstood. IEEE transactions on knowledge and data engineering, vol. 19, no. 4, pp. 363-387, 2020
https://doi.org/10.1111/1911-3838.12242
Page, M. J., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ, p. n71, 2021
https://doi.org/10.1136/bmj.n71
Copeland, B. J.,Sommaruga, G. (2015). The Stored-Program Universal Computer: Did Zuse Anticipate Turing and von Neumann? Turing's Revolution, Cham: Springer International Publishing, pp. 43-101, 2015
https://doi.org/10.1007/978-3-319-22156-4_3
Ceruzzi, P., Aspray W. (2003). A History of Modern Computing, second edition (History of Computing) MIT Press, 2003
Oakley, B., Kenneth, O. (1990). Britain's Strategic Computing Initiative. MIT Press, 1990
Chamberlin, D. D. (2012). Early history of SQL IEEE Annals of the History of Computing, vol. 34, no. 4, pp. 78-82, 2012
https://doi.org/10.1109/MAHC.2012.61
Chamberlin, D. D., Boyce, R. F. (1976). SEQUEL: A structured English query language Proceedings of the 1976 ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control, pp. 249-264., 1976
https://doi.org/10.1145/800296.811515
Elmasri, R., Navathe, S.B.,Baydaoui J. (2013). Fundamental of Database Systems Seventh Edition. 2013.
Stonebraker, M. (2010). SQL databases v. NoSQL databases Communications of the ACM, vol. 53, no. 4, pp. 10-11, 2010
https://doi.org/10.1145/1721654.1721659
Gudivada, V. N., Rao, D., Raghavan, V. V. (2014) NoSQL Systems for Big Data Management EEE World Congress on Services, pp. 190-197, 2014
https://doi.org/10.1109/SERVICES.2014.42
Harter, T., et al. (2014) Analysis of HDFS under HBase: A Facebook messages case study Proceedings of the 12th USENIX Conference on File and Storage Technologies, FAST 2014
Zaharia, M., Chowdhury, M.,Stoica, I. (2012) Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing In 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12),pp. 2-2, 2012
Gandomi, A., Haider, M. (2015) Beyond the hype: Big data concepts, methods, and analytics International journal of information management, vol. 35, no. 2, pp. 137-144, 2015
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
Hicham, R., Anis, B. M. (2022) Processes meet Big Data: Scaling process discovery algorithms in Big Data environment Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 10, pp. 8478-8489, 2022
https://doi.org/10.1016/j.jksuci.2021.02.008
Varghese, B., Buyya, R. (2018) Next generation cloud computing: New trends and research directions Future Generation Computer Systems, vol. 79, pp. 849-861, 2018
https://doi.org/10.1016/j.future.2017.09.020
Ren, J., Zhang, D., He, S., Zhang, Y., Li, T. (2020). A Survey on End-Edge-Cloud Orchestrated Network Computing Paradigms ACM Computing Surveys (CSUR), vol. 52, no. 6, pp. 1-36, 2020
https://doi.org/10.1145/3362031
Chen, X., Song, H., et al. (2021). Achieving low tail-latency and high scalability for serializable transactions in edge computing in Proceedings of the Sixteenth European Conference on Computer Systems, pp. 210-227, 2021
https://doi.org/10.1145/3447786.3456238
Filip, F.G. (2021). Automation and computers and their contribution to human well-being and resilience. Studies in Informatics and Control, vol. 30, no. 4, pp. 5-18, 2021
https://doi.org/10.24846/v30i4y202101
Filip, F.G. (2022). Collaborative Decision-Making: Concepts and Supporting Information and Communication Technology Tools and Systems International Journal of Computers Communications and Control, vol. 17, no. 2, 2022
https://doi.org/10.15837/ijccc.2022.2.4732
Luger, G.F. (2023). A Brief History and Foundations for Modern Artificial Intelligence International Journal of Semantic Computing, vol. 17, no. 01, pp. 143-170, 2023
https://doi.org/10.1142/S1793351X22500076
Duan, Y., Edwards, J.S., Dwivedi, Y.K. (2019) Artificial intelligence for decision making in the era of Big Data - evolution, challenges and research agenda International journal of information management, vol. 48, pp. 63-71, 2019
https://doi.org/10.1016/j.ijinfomgt.2019.01.021
Collins, C., Dennehy, D., Conboy, K., Mikalef P., (2021) Artificial intelligence in information systems research: A systematic literature review and research agenda International Journal of Information Management, vol. 60, p. 102383, 2021
https://doi.org/10.1016/j.ijinfomgt.2021.102383
Singh, G., Gehr, T., Püschel, M., Vechev, M. (2019) An abstract domain for certifying neural networks Proceedings of the ACM on Programming Languages, vol. 3, no. POPL, 2019
https://doi.org/10.1145/3290354
Ullah, N., Al-Rahmi, W. M., Alfarraj, O., Alalwan, N., Alzahrani, A. I., Ramayah, T., Kumar, V. (2022). Hybridizing cost saving with trust for blockchain technology adoption by financial institutions Telematics and Informatics Reports, vol. 6, p. 100008, 2022
https://doi.org/10.1016/j.teler.2022.100008
Nauta, M., Bucur, D., Seifert, C. (2019). Causal Discovery with Attention-Based Convolutional Neural Networks Machine Learning and Knowledge Extraction, vol. 1, no. 1, pp. 312-340, 2019
https://doi.org/10.3390/make1010019
Javaid, M., Haleem, A., Singh, R. P., Suman, R., Khan, S. (2022) A review of Blockchain Technology applications for financial services BenchCouncil Transactions on Benchmarks, Standards and Evaluations, vol. 2, no. 3, p. 100073, 2022
https://doi.org/10.1016/j.tbench.2022.100073
Mirestean, A., et al. (2021) Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance Departmental Papers, vol. 2021, no. 024, p. 1, 2021
https://doi.org/10.5089/9781589063952.087
Gul, R., Al-Faryan, M. A. S. (2023) From insights to impact: leveraging data analytics for data-driven decision-making and productivity in banking sector Humanities and Social Sciences Communications, vol. 10, no. 1, p. 660, 2023
https://doi.org/10.1057/s41599-023-02122-x
Sadalage, P., Fowler, M. (2012) NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence Vasa, 2012.
Anderson, J.C., Lehnardt, J., Slater, N. (2010) CouchDB: The Definitive Guide O'Reilly Media, Inc, 2010.
Kabakus, A. T, Kara, R. (2017). A performance evaluation of in-memory databases Journal of King Saud University-Computer and Information Sciences, vol. 29, no. 4, pp. 520-525, 2017
https://doi.org/10.1016/j.jksuci.2016.06.007
Bradshaw, S., Brazil, E., Chodorow, K. (2019). MongoDB: The Definitive Guide: Powerful and Scalabl Data Storage 3rd Edition, 2019
Lakshman, A., Malik, P. (2010). Cassandra: a decentralized structured storage system ACM SIGOPS operating systems review, pp. 1-6, 2010
https://doi.org/10.1145/1773912.1773922
Chevalier, M., Malki, M. E., Kopliku, A., Teste, O., Tournier, R. (2015). Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems In Advances in Databases and Information Systems: 19th East European Conference, pp. 79-91, 2015
https://doi.org/10.1007/978-3-319-23135-8_6
Halevy, A., Korn, F., Noy, N. F., Olston, C., Polyzotis, N., Roy, S., Whang, S. E. (2016) Goods: Organizing Google's Datasets in Proceedings of the 2016 International Conference on Management of Data, pp. 795-806, 2016
https://doi.org/10.1145/2882903.2903730
Plattner, H. (2009, June) A common database approach for OLTP and OLAP using an inmemory column database in Proceedings of the 2009 ACM SIGMOD International Conference on Management of data,pp. 1-2, 2009
https://doi.org/10.1145/1559845.1559846
Sikka, V., Färber, F., Goel, A., Lehner, W. (2013) SAP HANA: The evolution from a modern main-memory data platform to an enterprise application platform Proceedings of the VLDB Endowment, vol. 6, no. 11, pp. 1184-1185, 2013
https://doi.org/10.14778/2536222.2536251
Kaur, K., Sachdeva, M. (2017). Performance evaluation of NewSQL databases International Conference on Inventive Systems and Control (ICISC), pp. 1-5, 2017
https://doi.org/10.1109/ICISC.2017.8068585
Liu, F., et al. (2011). NIST cloud computing reference architecture NIST Special Publication, 2011
https://doi.org/10.6028/NIST.SP.500-292
Mell, P., Grance, T. (2011). The NIST definition of cloud computing NIST Special Publication, 2011
https://doi.org/10.6028/NIST.SP.800-145
Sultan, N. (2014). Making use of cloud computing for healthcare provision: Opportunities and challenges International Journal of Information Management, vol. 34, no. 2, pp. 177-184, 2014
https://doi.org/10.1016/j.ijinfomgt.2013.12.011
Zhang, Q., Cheng, L., Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges Journal of Internet Services and Applications, vol. 1, no. 1, pp. 7-18, 2010
https://doi.org/10.1007/s13174-010-0007-6
Sivarajah, U., Kamal, M.M., Irani, Z., Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods Journal of business research, vol. 70, pp. 263-286, 2017
https://doi.org/10.1016/j.jbusres.2016.08.001
Dean, J., Ghemawat, S. (2008) MapReduce: simplified data processing on large clusters Communications of the ACM, vol. 51, no. 1, pp. 107-113, 2008
https://doi.org/10.1145/1327452.1327492
Armbrust, M., et al. (2015) Spark SQL: Relational Data Processing in Spark in Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp. 1383-1394., 2015
https://doi.org/10.1145/2723372.2742797
Miloslavskaya, N., Tolstoy, A. (2016). Big Data, Fast Data and Data Lake Concepts Procedia Computer Science, vol. 88, pp. 300-305, 2016
https://doi.org/10.1016/j.procs.2016.07.439
Filip, F.G. (2021) AI vs AI (Augmenting [Human] Intellect vs Artificial Intelligence) in 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), vp. 000011-000012, 2021
https://doi.org/10.1109/SACI51354.2021.9465578
Khargonekar, P.P., Dahleh, M.A. (2018). Advancing systems and control research in the era of ML and AI Annual Reviews in Control, vol. 45, pp. 1-4, 2018
https://doi.org/10.1016/j.arcontrol.2018.04.001
LeCun, Y., Bengio, Y., Hinton, G. (2015) Deep learning Nature, vol. 521, no. 7553, pp. 436-444, 2015
https://doi.org/10.1038/nature14539
March, S.T., Hevner, A.R. (2007) Integrated decision support systems: A data warehousing perspective Decision support systems, vol. 43, no. 3, pp. 1031-1043, 2007
https://doi.org/10.1016/j.dss.2005.05.029
Giarratano, J., Riley, G. (1998) Expert Systems: Principles and Programming Third Edition. Course Technology, 1998
Cobo, M.J., Martínez, M.Á., Gutiérrez-Salcedo, M., Fujita, H., Herrera-Viedma, E. (2015) 25 years at knowledge-based systems: a bibliometric analysis Knowledge-based systems, vol. 80, pp. 3-13, 2015
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Sergiu-Alexandru Ionescu, Vlad Diaconita
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.