Optimized QoS Routing in Software-Defined In-Vehicle Networks
DOI:
https://doi.org/10.15837/ijccc.2024.1.5962Keywords:
software defined network, in-vehicle network architecture, network calculus, route optimizationAbstract
To address the problems of low network centralized management, weak interaction, limited hardware scalability, compatibility issues and challenges in expansion in the static deployment of traditional in-vehicle networks (IVNs), a new IVN architecture is designed. At the same time, to better meet the IVN Quality of Service (QoS) requirements and improve the real-time guarantee of data transmission, the QoS routing optimization mechanism under the new architecture is established. First, a new IVN architecture including a forwarding plane, control plane and application plane is designed by introducing software defined network (SDN) technology and combining it with the IVN itself. Second, the end-to-end delay optimization model of IVN is established by introducing network calculus theory, defining system parameters, creating a network model, calculating latency, considering queuing and congestion. the traditional routing algorithm is improved, and the DBROA algorithm has been proposed, which enhances the performance of QoS routing by introducing features such as distributed routing decisions, beacon mechanisms, optimization algorithms, and adaptability. This improvement allows it to better meet the QoS requirements of various applications and services, thereby enhancing existing QoS routing algorithms. Finally, an IVN routing optimization system is built and implemented, and the performance of different algorithms is compared and analyzed. The experimental results show that compared with the traditional Dijkstra and ECMP algorithms, the DBROA algorithm can effectively reduce the data forwarding delay and packet loss rate, improve the overall performance of IVN, and provide better QoS guarantees for IVN real-time data transmission.References
Bandur, V.; Selim, G.; Pantelic, V.; Lawford, M. (2021). Making the case for centralized automotive E/E architectures. IEEE Transactions on Vehicular Technology, 70(2): 1230-1245.
https://doi.org/10.1109/TVT.2021.3054934
Bhatia, J.; Modi, Y.; Tanwar, S.; Bhavsar, M. (2019). Software defined vehicular networks: A comprehensive review. International Journal of Communication Systems, 32(12): e4005.
https://doi.org/10.1002/dac.4005
Bhardwaj, S.; Panda, S.N. (2022). Performance evaluation using RYU SDN controller in softwaredefined networking environment. Wireless Personal Communications, 122(1): 701-723.
https://doi.org/10.1007/s11277-021-08920-3
Bouillard, A. (2021). Individual service curves for bandwidth-sharing policies using network calculus. IEEE Networking Letters, 3(2): 80-83.
https://doi.org/10.1109/LNET.2021.3067766
Bucher, H. (2020). Integrierte modellund simulationsbasierte Entwicklung zur dynamischen Bewertung automobiler Elektrik/Elektronik-Architekturen. Karlsruher Institut für Technologie (KIT).
Choi, E.; Song, H.; Kang, S.; Choi, J.W. (2021). High-speed, low-latency in-vehicle network based on the bus topology for autonomous vehicles: Automotive networking and applications. IEEE Vehicular Technology Magazine, 17(1): 74-84.
https://doi.org/10.1109/MVT.2021.3128876
David, R.; Li, S.; Dore, P. (2021). Modular and open platform for future automotive computing environment. Multi Processor System on Chip 2: Applications, 95.
https://doi.org/10.1002/9781119818410.ch5
Deng, L.; Xie, G.; Liu, H.; Han, Y.; Li, R.; Li, K. (2022). A survey of real-time ethernet modeling and design methodologies: From AVB to TSN. ACM Computing Surveys (CSUR), 55(2): 1-36.
https://doi.org/10.1145/3487330
Guo, H.; Zhou, X.; Liu, J.; Zhang, Y. (2022). Vehicular intelligence in 6G: Networking, communications, and computing. Vehicular Communications, 33: 100399.
https://doi.org/10.1016/j.vehcom.2021.100399
Guo, X.; Wang, C.; Cao, L.; Jiang, Y.; Yan, Y. (2022). A novel security mechanism for software defined network based on Blockchain. Computer Science and Information Systems, 19(2): 523- 545.
https://doi.org/10.2298/CSIS210222001G
Häckel, T.; Meyer, P.; Korf, F.; Schmidt, T.C. (2022). Secure time-sensitive software defined networking in vehicles. IEEE Transactions on Vehicular Technology, 72(1): 35-51.
https://doi.org/10.1109/TVT.2022.3202368
Huang, J.; Zhao, M.; Zhou, Y.; Xing, C.C. (2018). In-vehicle networking: Protocols, challenges, and solutions. IEEE Network, 33(1): 92-98.
https://doi.org/10.1109/MNET.2018.1700448
Huang, Z.Q.; Xu, B.J.; Zhang, Y.X.; Li, J.M. (2018). Software defined QoS routing algorithm for internet of vehicles based on network calculus. Computer Applications, 38(S2): 201-205.
Jain, A.; Nandan, D.; Meduri, P. (2023). Data export and optimization technique in connected vehicle. Ingénierie des Systèmes d'Information, 28(2): 517-525.
https://doi.org/10.18280/isi.280229
Jain, A.; Nandan, D.; Meduri, P. (2023). Data export and optimization technique in connected vehicle. Ingénierie des Systèmes d'Information, 28(2): 517-525.
https://doi.org/10.18280/isi.280229
Jia, W.W.; Xu, K.Y.; Wang, H.B.; Deng, X.L.; Wang, Z.G. (2020). Smart car electronic architecture analysis and research. Time Car, 2020(4): 43-46.
Jichici, C.; Groza, B.; Ragobete, R.; Murvay, P.S.; Andreica, T. (2022). Effective intrusion detection and prevention for the commercial vehicle SAE J1939 CAN bus. IEEE Transactions on Intelligent Transportation Systems, 23(10): 17425-17439.
https://doi.org/10.1109/TITS.2022.3151712
Ju, J.T.; Luo, Q.; Zheng, H.D. (2019). Routing control mechanism based on link characteristics in SDN. Computer Applications, 39(S1): 138-142.
Kim, D.Y.; Jung, M.; Kim, S. (2020). An internet of vehicles (IoV) access gateway design considering the efficiency of the in-vehicle ethernet backbone. Sensors, 21(1): 98.
https://doi.org/10.3390/s21010098
Kim, H.J.; Choi, M.H.; Kim, M.H.; Lee, S. (2021). Development of an ethernet-based heuristic time-sensitive networking scheduling algorithm for real-time in-vehicle data transmission. Electronics, 10(2): 157.
https://doi.org/10.3390/electronics10020157
Kobayashi, C.; Ito, Y. (2021). Study on effect of time synchronization precision on QoS with time-aware shaper. In 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), Kyoto, Japan, pp. 639-640.
https://doi.org/10.1109/GCCE53005.2021.9621894
Kostić, S.; Bjelica, M.; Tošić, N.; Kovačević, B. (2021). Prediction of mobile network QoS on the go for in-vehicle infotainment usage. In 2021 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, pp. 182-184.
https://doi.org/10.1109/ZINC52049.2021.9499249
Lee, T.Y.; Lin, I.A.; Liao, R.H. (2020). Design of a FlexRay/Ethernet gateway and security mechanism for in-vehicle networks. Sensors, 20(3): 641.
https://doi.org/10.3390/s20030641
Leonardi, L.; Bello, L.L.; Patti, G. (2021). Bandwidth partitioning for Time-Sensitive Networking flows in automotive communications. IEEE Communications Letters, 25(10): 3258-3261.
https://doi.org/10.1109/LCOMM.2021.3103004
Li, Y.C. (2020). EE communication network design and research based on SOME/IP. Automotive Digest, 2020(8): 32-38.
Liu, Z.P.; Zhang, Q.W.; Li, M.; Li, Z.Y.; Li, X.F. (2022). SDN routing strategy based on ant colony optimization algorithm. Journal of Kunming University of Technology (Natural Science Edition), 47(3): 60-66.
Lo Bello, L.; Patti, G.; Vasta, G. (2021). Assessments of real-time communications over TSN automotive networks. Electronics, 10(5): 556.
https://doi.org/10.3390/electronics10050556
Lu, S.; Shi, W. (2021). The emergence of vehicle computing. IEEE Internet Computing, 25(3): 18-22.
https://doi.org/10.1109/MIC.2021.3066076
Lv, J.; Zhao, Y.; Wu, X.; Li, Y.; Wang, Q. (2020). Formal analysis of TSN scheduler for real-time communications. IEEE Transactions on Reliability, 70(3): 1286-1294.
https://doi.org/10.1109/TR.2020.3026689
Mariño, A.G.; Fons, F.; Gharba, A.; Ming, L.; Arostegui, J.M.M. (2021). Elastic queueing engine for time sensitive networking. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021- Spring), Helsinki, Finland, pp. 1-7.
https://doi.org/10.1109/VTC2021-Spring51267.2021.9448758
Metwaly, S.S.; El-Haleem, A.M.A.; El-Ghandour, O. (2021). No-regret matching game algorithm for NOMA based UAV-Assisted NB-IoT systems. Ingénierie des Systèmes d'Information, 26(1): 79-85.
https://doi.org/10.18280/isi.260108
Nitta, M.; Ito, Y.; Hayakawa, M. (2021). QoS evaluation of combination SPQ, FRER and FP for in-vehicle networks. IEICE Communications Express, 10(12): 894-898.
https://doi.org/10.1587/comex.2021COL0012
Okokpujie, K., Mughole, D., Badejo, J.A., Adetiba, E. (2022). Congestion intrusion detectionbased method for controller area network bus: A case for KIA SOUL vehicle. Mathematical Modelling of Engineering Problems, 9(5): 1298-1304.
https://doi.org/10.18280/mmep.090518
Pallavi, C.H.; Sreenivasulu, G. (2021). A high speed underwater wireless communication through a novel hybrid opto-acoustic modem using MIMO-OFDM. Instrumentation Mesure Métrologie, 20(5): 279-287.
https://doi.org/10.18280/i2m.200505
Park, J.S.; Kim, D.H.; Suh, I.H. (2021). Design and implementation of security function according to routing method in automotive gateway. International Journal of Automotive Technology, 22: 19-25.
https://doi.org/10.1007/s12239-021-0003-9
Rumez, M.; Grimm, D.; Kriesten, R.; Sax, E. (2020). An overview of automotive service-oriented architectures and implications for security countermeasures. IEEE Access, 8: 221852-221870.
https://doi.org/10.1109/ACCESS.2020.3043070
Song, W.; Hu, Q.S.; Tang, J.A. (2019). Over the air download technology application in commercial vehicles. Auto Appliances, 2019(12): 8-11.
Syed, A.A.; Ayaz, S.; Leinmüller, T.; Chandra, M. (2021). Dynamic scheduling and routing for TSN based in-vehicle networks. In 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, pp. 1-6.
https://doi.org/10.1109/ICCWorkshops50388.2021.9473810
Syed, A.A.; Ayaz, S.; Leinmüller, T.; Chandra, M. (2021). Fault-tolerant dynamic scheduling and routing for TSN based in-vehicle networks. In 2021 IEEE Vehicular Networking Conference (VNC), Ulm, Germany, pp. 72-75.
https://doi.org/10.1109/VNC52810.2021.9644662
Walrand, J.; Turner, M.; Myers, R. (2021). An architecture for in-vehicle networks. IEEE Transactions on Vehicular Technology, 70(7): 6335-6342.
https://doi.org/10.1109/TVT.2021.3082464
Xie, Y.; Zhou, Y.; Xu, J.; Zhou, J.; Chen, X.; Xiao, F. (2021). Cybersecurity protection on invehicle networks for distributed automotive cyber physical systems: State of the art and future challenges. Software: Practice and Experience, 51(11): 2108-2127.
https://doi.org/10.1002/spe.2965
Yang, Y.P. (2019). Biyadi pure electric vehicle e platform technology analysis. Automobile Maintenance and Repair, 2019(23): 66-69.
Yang, C.Y.; Ruan, H.T.; Zhang, Y.F.; Chen, K. (2019). Automotive general hybrid network architecture design. Journal of Hubei Automotive Industry University, 33(2): 5-10.
Zhou, Z.; Lee, J.; Berger, M.S.; Park, S.; Yan, Y. (2021). Simulating TSN traffic scheduling and shaping for future automotive Ethernet. Journal of Communications and Networks, 23(1): 53-62.
https://doi.org/10.23919/JCN.2021.000001
Zuo, Z.; Yang, S.; Ma, B.; Zou, B.; Cao, Y.; Li, Q.; Li, J. (2021). Design of a CANFD to SOME/IP gateway considering security for in-vehicle networks. Sensors, 21(23): 7917.
Additional Files
Published
Issue
Section
License
Copyright (c) 2023 Yahong Zhai, Yong Lv, Longyan Xu
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.