Optimized QoS Routing in Software-Defined In-Vehicle Networks

Authors

  • Yahong Zhai School of Electrical & Information Engineering, Hubei University of Automotive Technology, Shiyan, China
  • Yong Lv School of Electrical & Information Engineering, Hubei University of Automotive Technology, Shiyan, China
  • Longyan Xu School of Electrical & Information Engineering, Hubei University of Automotive Technology, Shiyan, China

DOI:

https://doi.org/10.15837/ijccc.2024.1.5962

Keywords:

software defined network, in-vehicle network architecture, network calculus, route optimization

Abstract

To address the problems of low network centralized management, weak interaction, limited hardware scalability, compatibility issues and challenges in expansion in the static deployment of traditional in-vehicle networks (IVNs), a new IVN architecture is designed. At the same time, to better meet the IVN Quality of Service (QoS) requirements and improve the real-time guarantee of data transmission, the QoS routing optimization mechanism under the new architecture is established. First, a new IVN architecture including a forwarding plane, control plane and application plane is designed by introducing software defined network (SDN) technology and combining it with the IVN itself. Second, the end-to-end delay optimization model of IVN is established by introducing network calculus theory, defining system parameters, creating a network model, calculating latency, considering queuing and congestion. the traditional routing algorithm is improved, and the DBROA algorithm has been proposed, which enhances the performance of QoS routing by introducing features such as distributed routing decisions, beacon mechanisms, optimization algorithms, and adaptability. This improvement allows it to better meet the QoS requirements of various applications and services, thereby enhancing existing QoS routing algorithms. Finally, an IVN routing optimization system is built and implemented, and the performance of different algorithms is compared and analyzed. The experimental results show that compared with the traditional Dijkstra and ECMP algorithms, the DBROA algorithm can effectively reduce the data forwarding delay and packet loss rate, improve the overall performance of IVN, and provide better QoS guarantees for IVN real-time data transmission.

References

Bandur, V.; Selim, G.; Pantelic, V.; Lawford, M. (2021). Making the case for centralized automotive E/E architectures. IEEE Transactions on Vehicular Technology, 70(2): 1230-1245.

https://doi.org/10.1109/TVT.2021.3054934

Bhatia, J.; Modi, Y.; Tanwar, S.; Bhavsar, M. (2019). Software defined vehicular networks: A comprehensive review. International Journal of Communication Systems, 32(12): e4005.

https://doi.org/10.1002/dac.4005

Bhardwaj, S.; Panda, S.N. (2022). Performance evaluation using RYU SDN controller in softwaredefined networking environment. Wireless Personal Communications, 122(1): 701-723.

https://doi.org/10.1007/s11277-021-08920-3

Bouillard, A. (2021). Individual service curves for bandwidth-sharing policies using network calculus. IEEE Networking Letters, 3(2): 80-83.

https://doi.org/10.1109/LNET.2021.3067766

Bucher, H. (2020). Integrierte modellund simulationsbasierte Entwicklung zur dynamischen Bewertung automobiler Elektrik/Elektronik-Architekturen. Karlsruher Institut für Technologie (KIT).

Choi, E.; Song, H.; Kang, S.; Choi, J.W. (2021). High-speed, low-latency in-vehicle network based on the bus topology for autonomous vehicles: Automotive networking and applications. IEEE Vehicular Technology Magazine, 17(1): 74-84.

https://doi.org/10.1109/MVT.2021.3128876

David, R.; Li, S.; Dore, P. (2021). Modular and open platform for future automotive computing environment. Multi Processor System on Chip 2: Applications, 95.

https://doi.org/10.1002/9781119818410.ch5

Deng, L.; Xie, G.; Liu, H.; Han, Y.; Li, R.; Li, K. (2022). A survey of real-time ethernet modeling and design methodologies: From AVB to TSN. ACM Computing Surveys (CSUR), 55(2): 1-36.

https://doi.org/10.1145/3487330

Guo, H.; Zhou, X.; Liu, J.; Zhang, Y. (2022). Vehicular intelligence in 6G: Networking, communications, and computing. Vehicular Communications, 33: 100399.

https://doi.org/10.1016/j.vehcom.2021.100399

Guo, X.; Wang, C.; Cao, L.; Jiang, Y.; Yan, Y. (2022). A novel security mechanism for software defined network based on Blockchain. Computer Science and Information Systems, 19(2): 523- 545.

https://doi.org/10.2298/CSIS210222001G

Häckel, T.; Meyer, P.; Korf, F.; Schmidt, T.C. (2022). Secure time-sensitive software defined networking in vehicles. IEEE Transactions on Vehicular Technology, 72(1): 35-51.

https://doi.org/10.1109/TVT.2022.3202368

Huang, J.; Zhao, M.; Zhou, Y.; Xing, C.C. (2018). In-vehicle networking: Protocols, challenges, and solutions. IEEE Network, 33(1): 92-98.

https://doi.org/10.1109/MNET.2018.1700448

Huang, Z.Q.; Xu, B.J.; Zhang, Y.X.; Li, J.M. (2018). Software defined QoS routing algorithm for internet of vehicles based on network calculus. Computer Applications, 38(S2): 201-205.

Jain, A.; Nandan, D.; Meduri, P. (2023). Data export and optimization technique in connected vehicle. Ingénierie des Systèmes d'Information, 28(2): 517-525.

https://doi.org/10.18280/isi.280229

Jain, A.; Nandan, D.; Meduri, P. (2023). Data export and optimization technique in connected vehicle. Ingénierie des Systèmes d'Information, 28(2): 517-525.

https://doi.org/10.18280/isi.280229

Jia, W.W.; Xu, K.Y.; Wang, H.B.; Deng, X.L.; Wang, Z.G. (2020). Smart car electronic architecture analysis and research. Time Car, 2020(4): 43-46.

Jichici, C.; Groza, B.; Ragobete, R.; Murvay, P.S.; Andreica, T. (2022). Effective intrusion detection and prevention for the commercial vehicle SAE J1939 CAN bus. IEEE Transactions on Intelligent Transportation Systems, 23(10): 17425-17439.

https://doi.org/10.1109/TITS.2022.3151712

Ju, J.T.; Luo, Q.; Zheng, H.D. (2019). Routing control mechanism based on link characteristics in SDN. Computer Applications, 39(S1): 138-142.

Kim, D.Y.; Jung, M.; Kim, S. (2020). An internet of vehicles (IoV) access gateway design considering the efficiency of the in-vehicle ethernet backbone. Sensors, 21(1): 98.

https://doi.org/10.3390/s21010098

Kim, H.J.; Choi, M.H.; Kim, M.H.; Lee, S. (2021). Development of an ethernet-based heuristic time-sensitive networking scheduling algorithm for real-time in-vehicle data transmission. Electronics, 10(2): 157.

https://doi.org/10.3390/electronics10020157

Kobayashi, C.; Ito, Y. (2021). Study on effect of time synchronization precision on QoS with time-aware shaper. In 2021 IEEE 10th Global Conference on Consumer Electronics (GCCE), Kyoto, Japan, pp. 639-640.

https://doi.org/10.1109/GCCE53005.2021.9621894

Kostić, S.; Bjelica, M.; Tošić, N.; Kovačević, B. (2021). Prediction of mobile network QoS on the go for in-vehicle infotainment usage. In 2021 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad, Serbia, pp. 182-184.

https://doi.org/10.1109/ZINC52049.2021.9499249

Lee, T.Y.; Lin, I.A.; Liao, R.H. (2020). Design of a FlexRay/Ethernet gateway and security mechanism for in-vehicle networks. Sensors, 20(3): 641.

https://doi.org/10.3390/s20030641

Leonardi, L.; Bello, L.L.; Patti, G. (2021). Bandwidth partitioning for Time-Sensitive Networking flows in automotive communications. IEEE Communications Letters, 25(10): 3258-3261.

https://doi.org/10.1109/LCOMM.2021.3103004

Li, Y.C. (2020). EE communication network design and research based on SOME/IP. Automotive Digest, 2020(8): 32-38.

Liu, Z.P.; Zhang, Q.W.; Li, M.; Li, Z.Y.; Li, X.F. (2022). SDN routing strategy based on ant colony optimization algorithm. Journal of Kunming University of Technology (Natural Science Edition), 47(3): 60-66.

Lo Bello, L.; Patti, G.; Vasta, G. (2021). Assessments of real-time communications over TSN automotive networks. Electronics, 10(5): 556.

https://doi.org/10.3390/electronics10050556

Lu, S.; Shi, W. (2021). The emergence of vehicle computing. IEEE Internet Computing, 25(3): 18-22.

https://doi.org/10.1109/MIC.2021.3066076

Lv, J.; Zhao, Y.; Wu, X.; Li, Y.; Wang, Q. (2020). Formal analysis of TSN scheduler for real-time communications. IEEE Transactions on Reliability, 70(3): 1286-1294.

https://doi.org/10.1109/TR.2020.3026689

Mariño, A.G.; Fons, F.; Gharba, A.; Ming, L.; Arostegui, J.M.M. (2021). Elastic queueing engine for time sensitive networking. In 2021 IEEE 93rd Vehicular Technology Conference (VTC2021- Spring), Helsinki, Finland, pp. 1-7.

https://doi.org/10.1109/VTC2021-Spring51267.2021.9448758

Metwaly, S.S.; El-Haleem, A.M.A.; El-Ghandour, O. (2021). No-regret matching game algorithm for NOMA based UAV-Assisted NB-IoT systems. Ingénierie des Systèmes d'Information, 26(1): 79-85.

https://doi.org/10.18280/isi.260108

Nitta, M.; Ito, Y.; Hayakawa, M. (2021). QoS evaluation of combination SPQ, FRER and FP for in-vehicle networks. IEICE Communications Express, 10(12): 894-898.

https://doi.org/10.1587/comex.2021COL0012

Okokpujie, K., Mughole, D., Badejo, J.A., Adetiba, E. (2022). Congestion intrusion detectionbased method for controller area network bus: A case for KIA SOUL vehicle. Mathematical Modelling of Engineering Problems, 9(5): 1298-1304.

https://doi.org/10.18280/mmep.090518

Pallavi, C.H.; Sreenivasulu, G. (2021). A high speed underwater wireless communication through a novel hybrid opto-acoustic modem using MIMO-OFDM. Instrumentation Mesure Métrologie, 20(5): 279-287.

https://doi.org/10.18280/i2m.200505

Park, J.S.; Kim, D.H.; Suh, I.H. (2021). Design and implementation of security function according to routing method in automotive gateway. International Journal of Automotive Technology, 22: 19-25.

https://doi.org/10.1007/s12239-021-0003-9

Rumez, M.; Grimm, D.; Kriesten, R.; Sax, E. (2020). An overview of automotive service-oriented architectures and implications for security countermeasures. IEEE Access, 8: 221852-221870.

https://doi.org/10.1109/ACCESS.2020.3043070

Song, W.; Hu, Q.S.; Tang, J.A. (2019). Over the air download technology application in commercial vehicles. Auto Appliances, 2019(12): 8-11.

Syed, A.A.; Ayaz, S.; Leinmüller, T.; Chandra, M. (2021). Dynamic scheduling and routing for TSN based in-vehicle networks. In 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, pp. 1-6.

https://doi.org/10.1109/ICCWorkshops50388.2021.9473810

Syed, A.A.; Ayaz, S.; Leinmüller, T.; Chandra, M. (2021). Fault-tolerant dynamic scheduling and routing for TSN based in-vehicle networks. In 2021 IEEE Vehicular Networking Conference (VNC), Ulm, Germany, pp. 72-75.

https://doi.org/10.1109/VNC52810.2021.9644662

Walrand, J.; Turner, M.; Myers, R. (2021). An architecture for in-vehicle networks. IEEE Transactions on Vehicular Technology, 70(7): 6335-6342.

https://doi.org/10.1109/TVT.2021.3082464

Xie, Y.; Zhou, Y.; Xu, J.; Zhou, J.; Chen, X.; Xiao, F. (2021). Cybersecurity protection on invehicle networks for distributed automotive cyber physical systems: State of the art and future challenges. Software: Practice and Experience, 51(11): 2108-2127.

https://doi.org/10.1002/spe.2965

Yang, Y.P. (2019). Biyadi pure electric vehicle e platform technology analysis. Automobile Maintenance and Repair, 2019(23): 66-69.

Yang, C.Y.; Ruan, H.T.; Zhang, Y.F.; Chen, K. (2019). Automotive general hybrid network architecture design. Journal of Hubei Automotive Industry University, 33(2): 5-10.

Zhou, Z.; Lee, J.; Berger, M.S.; Park, S.; Yan, Y. (2021). Simulating TSN traffic scheduling and shaping for future automotive Ethernet. Journal of Communications and Networks, 23(1): 53-62.

https://doi.org/10.23919/JCN.2021.000001

Zuo, Z.; Yang, S.; Ma, B.; Zou, B.; Cao, Y.; Li, Q.; Li, J. (2021). Design of a CANFD to SOME/IP gateway considering security for in-vehicle networks. Sensors, 21(23): 7917.

https://doi.org/10.3390/s21237917

Additional Files

Published

2024-01-04

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.