Optimizing dynamic keystroke pattern recognition with hybrid deep learning technique and multiple soft biometric factors

Authors

  • Shanmugavalli Venkatachalam Department of Computer Science and Engineering, K.S.R. College of Engineering, Tiruchengode, India
  • Rajiv Kannan Department of Computer Science and Engineering, K.S.R. College of Engineering, Tiruchengode, India

DOI:

https://doi.org/10.15837/ijccc.2024.2.6097

Keywords:

keystroke pattern recognition, soft biometrics, feature optimization, feature fusion, deep learning technique

Abstract

In this work, we propose an optimization approach for dynamic keystroke pattern recognition by leveraging a hybrid deep learning technique and multiple soft biometric factors. Our methodology begins with the introduction of a novel algorithm called dynamic drone squadron optimization (DDSO) to optimize the selection of optimal features from a pool of multiple keystroke features. We then present an enhanced version of the improved sperm swarm optimization (ISSO) algorithm, which effectively combines the optimal weight features derived from multiple biometric responses. Furthermore, we introduce the multi-stage recurrent neural network (MS-RNN) classifier to accurately recognize and classify keystroke patterns. The performance of our proposed ISSO+MS-RNN technique is evaluated using the benchmark KBOC dataset to validate its effectiveness. Comparative analysis is conducted against existing state-of-the-art techniques, employing various evaluation measures, to demonstrate the superior performance of proposed approach.`

References

Hosseinzadeh, D.; Krishnan, S. (2008). Gaussian mixture modeling of keystroke patterns for biometric applications, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(6), 816-826, 2008.

https://doi.org/10.1109/TSMCC.2008.2001696

Urtiga, E.V.C. ; Moreno, E.D. (2011). Keystroke-based biometric authentication in mobile devices, IEEE Latin America Transactions, 9(3), 368-375, 2011.

https://doi.org/10.1109/TLA.2011.5893786

Ahmed, A.A.; Traore, I. (2013). Biometric recognition based on free-text keystroke dynamics, IEEE transactions on cybernetics, 44(4), 458-472, 2013.

https://doi.org/10.1109/TCYB.2013.2257745

Sitova, Z.; Sedenka, J.; Yang, Q.; Peng, G.; Zhou, G.; Gasti, P.; Balagani, K.S. (2015). HMOG: New behavioral biometric features for continuous authentication of smartphone users, IEEE Transactions on Information Forensics and Security, 11(5), 877-892, 2015

https://doi.org/10.1109/TIFS.2015.2506542

Morales, A.; Fierrez, J.; Tolosana, R.;Ortega-Garcia, J.; Galbally, J.; Gomez-Barrero, M.; Anjos, A.; Marcel, S. (2016). Keystroke biometrics ongoing competition, IEEE Access, 4, 7736-7746, 2016.

https://doi.org/10.1109/ACCESS.2016.2626718

Mondal, S.; Bours, P. (2017). Person identification by keystroke dynamics using pairwise user coupling, IEEE Transactions on Information Forensics and Security, 12(6), 1319-1329, 2017.

https://doi.org/10.1109/TIFS.2017.2658539

Venkatesan, V.K.; Kuppusamy Murugesan, K.R.; Chandrasekaran, K.A.; Thyluru Ramakrishna, M; Khan, S.B.; Almusharraf, A ; Albuali, A. (2023). Cancer Diagnosis through Contour Visualization of Gene Expression Leveraging Deep Learning Techniques, Diagnostics, 3(22), 3452, 2023.

https://doi.org/10.3390/diagnostics13223452

Alpar, O. (2017). Frequency spectrograms for biometric keystroke authentication using neural network based classifier, Knowledge-Based Systems, 116, 163-171, 2017.

https://doi.org/10.1016/j.knosys.2016.11.006

Mondal, S.; Bours, P. (2017). A study on continuous authentication using a combination of keystroke and mouse biometrics, Neurocomputing, 230, 1-22, 2017.

https://doi.org/10.1016/j.neucom.2016.11.031

Goodkind, A.; Brizan, D.G.; Rosenberg, A. (2017). Utilizing overt and latent linguistic structure to improve keystroke-based authentication, Image and Vision Computing, 58, 230-238, 2017.

https://doi.org/10.1016/j.imavis.2016.06.003

Kim, J.; Kim, H.; Kang, P. (2018). Keystroke dynamics-based user authentication using freely typed text based on user-adaptive feature extraction and novelty detection, Applied Soft Computing, 62, 1077-1087, 2018.

https://doi.org/10.1016/j.asoc.2017.09.045

Muliono, Y.; Ham, H.; Darmawan, D. (2018). Keystroke dynamic classification using machine learning for password authorization, Procedia Computer Science, 135, 564-569, 2018.

https://doi.org/10.1016/j.procs.2018.08.209

Awasthi, M. A.; T R, M.; Joshi, D. R.; Pandey, D. A. K; Saxena, D. R.; Goswami, S (2022). Smart Grid Sensor Monitoring Based on Deep Learning Technique with Control System Management in Fault Detection, International Journal of Communication Networks and Information Security (IJCNIS), 14(3), 123-137, 2022.

https://doi.org/10.17762/ijcnis.v14i3.5600

Pisani, P.H.; Giot, R.; De Carvalho, A.C.; Lorena, A.C. (2016). Enhanced template update: Application to keystroke dynamics, Computers and Security, 60, 134-153, 2016.

https://doi.org/10.1016/j.cose.2016.04.004

15. Ogbanufe, O.; Kim, D.J. (2018). Comparing fingerprint-based biometrics authentication versus traditional authentication methods for e-payment, Decision Support Systems, 106, 1-14, 2018.

https://doi.org/10.1016/j.dss.2017.11.003

Chang, C.; Eude, T.; Obando Carbajal, L.E. (2016). Biometric authentication by keystroke dynamics for remote evaluation with one-class classification, In Advances in Artificial Intelligence: 29th Canadian Conference on Artificial Intelligence, Canadian AI 2016, Victoria, BC, Canada, May 31-June 3, 2016. Proceedings 29,(21-32), Springer International Publishing.

https://doi.org/10.1007/978-3-319-34111-8_3

Ali, M.L.; Monaco, J.V.; Tappert, C.C.; Qiu, M. (2017). Keystroke biometric systems for user authentication, Journal of Signal Processing Systems, 86, 175-190, 2017.

https://doi.org/10.1007/s11265-016-1114-9

Senthil Kumar, T.; Suresh, A.; Karumathil, A. (2014). Improvised classification model for cloud based authentication using keystroke dynamics, In Frontier and Innovation in Future Computing and Communications, Springer Netherlands, 885-893, 2014.

https://doi.org/10.1007/978-94-017-8798-7_97

Neha; Chatterjee, K. (2019). Biometric re-authentication: An approach towards achieving transparency in user authentication, Multimedia Tools and Applications, 78, 6679-6700, 2019.

https://doi.org/10.1007/s11042-018-6448-9

20. Shi, Y.; Wang, X.; Zheng, K.; Cao, S. (2023). User authentication method based on keystroke dynamics and mouse dynamics using HAD, Multimedia Systems, 29(2), 653-668, 2023.

https://doi.org/10.1007/s00530-022-00997-5

Baskaran, N. K.; Mahesh, T. R. (2023). Performance Analysis of Deep Learning based Segmentation of Retinal Lesions in Fundus Images, 2023 Second International Conference on Electronics and Renewable Systems (ICEARS), Tuticorin, India, 1306-1313, 2023.

https://doi.org/10.1109/ICEARS56392.2023.10085616

Alsultan, A.; Warwick, K.; Wei, H. (2017). Non-conventional keystroke dynamics for user authentication, Pattern Recognition Letters, 89, 53-59, 2017.

https://doi.org/10.1016/j.patrec.2017.02.010

Ho, J.; Kang, D.K. (2018). One-class naive Bayes with duration feature ranking for accurate user authentication using keystroke dynamics, Applied Intelligence, 48(6), 1547-1564, 2018.

https://doi.org/10.1007/s10489-017-1020-2

Lamiche, I.; Bin, G.; Jing, Y.; Yu, Z.; Hadid, A. (2019). A continuous smartphone authentication method based on gait patterns and keystroke dynamics, Journal of Ambient Intelligence and Humanized Computing, 10(11), 4417-4430, 2019.

https://doi.org/10.1007/s12652-018-1123-6

Wang, Y.; Wu, C.; Zheng, K.; Wang, X. (2019). Improving reliability: User authentication on smartphones using keystroke biometrics, IEEE Access, 7, 26218-26228, 2019.

https://doi.org/10.1109/ACCESS.2019.2891603

Saini, B.S.; Singh, P.; Nayyar, A.; Kaur, N.; Bhatia, K.S.; El-Sappagh, S.; Hu, J.W. ( 2020). A Three-Step Authentication Model for Mobile Phone User Using Keystroke Dynamics, IEEE Access, 8, 125909-125922, 2020.

https://doi.org/10.1109/ACCESS.2020.3008019

Huang, A.; Gao, S.; Chen, J.; Xu, L.; Nathan, A. (2020). High Security User Authentication Enabled by Piezoelectric Keystroke Dynamics and Machine Learning, IEEE Sensors Journal, 20(21), 1303-13046, 2020.

https://doi.org/10.1109/JSEN.2020.3001382

Kim, D.I.; Lee, S.; Shin, J.S. (2020). A new feature scoring method in keystroke dynamics-based user authentications, IEEE Access, 8, 27901-27914, 2020.

https://doi.org/10.1109/ACCESS.2020.2968918

Kiyani, A.T.; Lasebae, A.; Ali, K.; Rehman, M.U.; Haq, B. (2020). Continuous user authentication featuring keystroke dynamics based on robust recurrent confidence model and ensemble learning approach, IEEE Access, 8, 156177-156189, 2020.

https://doi.org/10.1109/ACCESS.2020.3019467

Kim, J.; Kang, P. (2020). Freely typed keystroke dynamics-based user authentication for mobile devices based on heterogeneous features, Pattern Recognition, 108, 107556, 2020.

https://doi.org/10.1016/j.patcog.2020.107556

Lu, X.; Zhang, S.; Hui, P.; Lio, P. (2020). Continuous authentication by free-text keystroke based on CNN and RNN, Computers and Security, 96, 101861, 2020.

https://doi.org/10.1016/j.cose.2020.101861

Toosi, R.; Akhaee, M.A. (2021). Time-frequency analysis of keystroke dynamics for user authentication, Future Generation Computer Systems, 115, 438-447, 2021.

https://doi.org/10.1016/j.future.2020.09.027

Ramu, T.; Suthendran, K.; Arivoli, T. (2019). Machine learning based soft biometrics for enhanced keystroke recognition system, Multimedia Tools and Applications, 1-17, 2019.

Shanmugavalli, V.; Suresh Kumar, S.; Nithya Kalyani, S. (2023). A Hybrid Machine Learning Technique for Multiple Soft Biometric Based Dynamic Keystroke Pattern Recognition System, Neural Processing Letters, 1-27, 2023.

https://doi.org/10.1007/s11063-023-11354-6

Shen, M.; Shen, J.; Yu, L. (2023). Neural integrated Markov model for effective script identification and classification in biometric system, Journal of Radiation Research and Applied Sciences, 100694, 2023

https://doi.org/10.1016/j.jrras.2023.100694

Gona, A.; Subramoniam, M.; Swarnalatha, R. (2023). Transfer learning convolutional neural network with modified Lion optimization for multimodal biometric system, Computers and Electrical Engineering, 108, 108664, 2023.

https://doi.org/10.1016/j.compeleceng.2023.108664

Shakil, S.; Arora, D.; Zaidi, T. (2023). Feature identification and classification of hand based biometrics through ensemble learning approach, Measurement: Sensors, 25, 100593, 2023.

https://doi.org/10.1016/j.measen.2022.100593

Coelho, K.K.; Tristao, E.T.; Nogueira, M., Vieira, A.B.; Nacif, J.A. (2023). Multimodal biometric authentication method by federated learning, Biomedical Signal Processing and Control, 85, 105022, 2023.

https://doi.org/10.1016/j.bspc.2023.105022

Additional Files

Published

2024-03-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.