Enhancing Automated Loading and Unloading of Ship Unloaders through Dynamic 3D Coordinate System with Deep Learning

Authors

  • Lufeng Wang Department of Artificial Intelligence and Big Data, Chongqing Industry Polytechnic College Chongqing, China
  • Qu Li Chongqing Tiancheng Digital Technology Co., Ltd. Chongqing, China
  • Wei Fu Department of Artificial Intelligence and Big Data, Chongqing Industry Polytechnic College Chongqing, China
  • Fei Jiang Chongqing Tiancheng Digital Technology Co., Ltd. Chongqing, China
  • Tianxing Song Chongqing Tiancheng Digital Technology Co., Ltd. Chongqing, China
  • Guangbo Pi Chongqing Tiancheng Digital Technology Co., Ltd. Chongqing, China
  • Shijie Sun Chongqing Tiancheng Digital Technology Co., Ltd. Chongqing, China

DOI:

https://doi.org/10.15837/ijccc.2024.2.6234

Keywords:

3D coordinates, Convolutional, GAN, Codec, Loading and unloading

Abstract

This paper proposes a deep learning approach for accurate pose estimation in ship unloaders, improving grasping accuracy by reconstructing 3D coordinates. A convolutional neural network optimizes depth map prediction from RGB images, further enhanced by a conditional generative adversarial network to refine quality. Evaluation of simulated ship unloading tasks showed over 90% grasping success rate, outperforming baseline methods. This research offers valuable insights into advanced visual perception and deep learning for next-generation automated cargo handling.

References

Milana, G.; Banisoleiman, K.; González, A. (2021). An investigation into the moving load problem for the lifting boom of a ship unloader, Engineering Structures, 234(1), 111899-111919, 2021.

https://doi.org/10.1016/j.engstruct.2021.111899

Zan, J. (2022). Research on robot path perception and optimization technology based on whale optimization algorithm, Journal of Computational and Cognitive Engineering, 1(4), 201-208, 2022.

https://doi.org/10.47852/bonviewJCCE597820205514

Alam, M. S.; Kwon, K. C.; Kim, N. (2021). Implementation of a Character Recognition System Based on Finger-Joint Tracking Using a Depth Camera, IEEE Transactions on Human-Machine Systems, 51(3), 229-231, 2021.

https://doi.org/10.1109/THMS.2021.3066854

Li, L.; Chen, X.; Zhang, T. (2022). Pose estimation of metal workpieces based on RPM-Net for robot grasping from point cloud, Industrial Robot, 49(6), 1178-1189, 2022.

https://doi.org/10.1108/IR-03-2022-0081

Gao, H. N.; Shen, D. H.; Yu, L. ; Zhang, W. C. (2020). Identification of Cutting Chatter through Deep Learning and Classification, International Journal of Simulation Modelling, 19(4), 667-677.

https://doi.org/10.2507/IJSIMM19-4-CO16

Kushwaha, V.; Shukla, P.; Nandi, G. C. (2023). Generating quality grasp rectangle using Pix2Pix GAN for intelligent robot grasping, Machine Vision and Applications, 34(1), 09821-09836, 2023.

https://doi.org/10.1007/s00138-022-01362-2

Shengqian, L.; Xiaofan, Z. (2022). Research on Hand-eye Calibration Technology of Visual Service Robot Grasping Based on ROS, Chinese Journal of Instrument: English, 9(001), 23-30, 2022.

Higo, R.; Senoo, T.; Ishikawa, M. (2020). Dynamic In-Hand Regrasping Using a High-Speed Robot Hand and High-Speed Vision, IFAC-PapersOnLine, 53(2), 9796-9801, 2020.

https://doi.org/10.1016/j.ifacol.2020.12.2671

Jin, X.; Tang, L.; Li, R.; Zhao, B.; Ji, J.; Ma, Y. (2022). Edge recognition and reduced transplantation loss of leafy vegetable seedlings with Intel RealSense D415 depth camera, Computers and Electronics in Agriculture, 198(1), 107030-107044, 2022.

https://doi.org/10.1016/j.compag.2022.107030

Štampar, M.; Fertalj, K. (2022) Applied Machine Learning in Recognition of DGA Domain Names. Computer Science and Information Systems, 19(1), 205-227, 2022.

https://doi.org/10.2298/CSIS210104046S

He, G.; Huang, X.; Xu, Y.; Qin, J.; Sun, K. (2023). Cable tunnel unmanned aerial vehicle location and navigation method based on ultra wideband and depth camera fusion, IET Electrical Systems in Transportation, 13(1), 12068-12069, 2023.

https://doi.org/10.1049/els2.12068

He, B.; Qian, S.; Niu, Y. (2023). Visual recognition and location algorithm based on optimized YOLOv3 detector and RGB depth camera, The Visual Computer, 240(1), 1-17, 2023.

https://doi.org/10.1007/s00371-023-02895-x

Zhou, C.; Ren, D.; Zhang, X.; Yu, C.; Ju, L. (2022). Human Position Detection Based on Depth Camera Image Information in Mechanical Safety, Advances in Mathematical Physics, 000(1), 9170642-9170652, 2022.

https://doi.org/10.1155/2022/9170642

Zou, L.; Zhuang, K. J.; Zhou, A.; Hu, J. (2023). Bayesian optimization and channel-fusionbased convolutional autoencoder network for fault diagnosis of rotating machinery, Engineering Structures, 280(1), 115708-115720, 2023.

https://doi.org/10.1016/j.engstruct.2023.115708

Cajas, Y. R. A.; Guisado, Y. Z.; Vergaray, A. D. (2023). Identify faults in road structure zones with deep learning. Journal of System and Management Sciences, 13(1), 63-84, 2023.

https://doi.org/10.33168/JSMS.2023.0104

Li, C.; Dong, G.; Wang, R. (2022). A three-dimensional reconstruction algorithm of nonwoven fabric based on an anthill model, Textile Research Journal, 92(11), 1876-1890, 2022.

https://doi.org/10.1177/00405175211073354

Ji, X.; Zhao, Q.; Cheng, J.; Ma, C. (2021). Exploiting spatio-temporal representation for 3D human action recognition from depth map sequences, Knowledge-Based Systems, 227(1), 107040- 107040, 2021.

https://doi.org/10.1016/j.knosys.2021.107040

Ni, J.; Zhou, Z.; Zhao, Y.; Han, Z.; Zhao, L. (2023). Tomato leaf disease recognition based on improved convolutional neural network with attention mechanism, Plant Pathology, 72(7), 1335-1344, 2023.

https://doi.org/10.1111/ppa.13745

Cheng, Y.; Wan, Y.; Sima, Y.; Zhang, Y.; Hu, S. ; Wu, S. (2022). Text Detection of Transformer Based on Deep Learning Algorithm. Tehnički vjesnik, 29(3), 861-866, 2022.

https://doi.org/10.17559/TV-20211027110610

Sun, X.; Zhou, K.; Shi, S.; Song, K.; Chen, X. (2022). A new cyclical generative adversarial network based data augmentation method for multiaxial fatigue life prediction, International Journal of Fatigue, 162(1), 106996-107013, 2022.

https://doi.org/10.1016/j.ijfatigue.2022.106996

Saeed, A.; Hayat, M. F.; Habib, T.; Ghaffar, D. A.; Qureshi, M. A. (2022). A novel multi-speakers Urdu singing voices synthesizer using Wasserstein Generative Adversarial Network, Speech Communication, 137(1), 103-113, 2022.

https://doi.org/10.1016/j.specom.2021.12.005

Zhang, H.; Chen, X.; Lu, S.; Yao, L.; Chen, X. (2023). A contrastive learning-based attention generative adversarial network for defect detection in color-patterned fabric, Coloration Technology, 139(3), 248-264, 2023.

https://doi.org/10.1111/cote.12642

Wang, M.; Luo, J.; Zheng, L.; Yuan, J.; Walter, U. (2020). Generate optimal grasping trajectories to the end-effector using an improved genetic algorithm, Advances in Space Research, 66(7), 1803- 1817, 2020.

https://doi.org/10.1016/j.asr.2020.06.022

Hong, L. C.; Tee, C.; Goh, M. K. O. (2022). Activities of daily living recognition using deep learning approaches. Journal of Logistics, Informatics and Service Science, 9(4), 129-148, 2022.

Jiang, C.; Wang, D.; Zhao, B.; Liao, Z.; Gu, G. (2021). Modeling and inverse design of bioinspired multi-segment pneu-net soft manipulators for 3D trajectory motion, Applied Physics Reviews, 8(4), 054468-054468, 2021.

https://doi.org/10.1063/5.0054468

Additional Files

Published

2024-03-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.