A Data-Driven Assessment Model for Metaverse Maturity

Authors

  • Mincong Tang Beijing Jiatong University, China
  • Jie Cao Xuzhou University of Technology, China
  • Zixiang Fan Beijing Union University, China
  • Dalin Zhang Beijing Jiaotong University, China
  • Ionut Pandelica Bucharest University of Economic Studies, Faculty of International Economic Relations, Romania

DOI:

https://doi.org/10.15837/ijccc.2024.4.6498

Keywords:

Metaverse, Data Driven, Maturity Assessment, K-Means.

Abstract

The rapid development of the metaverse has sparked extensive discussion on how to estimate its development maturity using quantifiable indicators, which can offer an assessment framework for governing the metaverse. Currently, the measurable methods for assessing the maturity of the metaverse are still in the early stages. Data-driven approaches, which depend on the collection, analysis, and interpretation of large volumes of data to guide decisions and actions, are becoming more important. This paper proposes a data-driven approach to assess the maturity of the metaverse based on K-means-AdaBoost. This method automatically updates the indicator weights based on the knowledge acquired from the model, thereby significantly enhancing the accuracy of model predictions. Our approach assesses the maturity of metaverse systems through a thorough analysis of metaverse data and provides strategic guidance for their development.

References

Meng, Z.; She, C.; Zhao, G. & Martini, D. (2022). Sampling, Communication, and Prediction Co- Design for Synchronizing the Real-World Device and Digital Model in Metaverse, IEEE Journal on Selected Areas in Communications, 41, 288-300. https://doi.org/10.1109/JSAC.2022.3221993

Star X.Zhao; Qiao Lili; Fred Y.Ye.(2022). A Review of Metaverse Research and Applications, Journal of Information Resources Management, 2022, 12(4): 12-23,45.

Wang, Y.; Su Z.; Zhang N. et al.(2022). A Survey on Metaverse: Fundamentals, Security, and Privacy, IEEE Communications Surveys & Tutorials, 2022, 25: 319-52. https://doi.org/10.1109/COMST.2022.3202047

Lee, L-H; Braud, T.; Zhou, P. et al. (2021). All One Needs to Know about Metaverse: A Complete Survey on Technological Singularity, Virtual Ecosystem, and Research Agenda, ArXiv, 2021, abs/2110.05352.

Wang, H.; Ning, H.; Lin, Y. et al. (2023). A Survey on the Metaverse: The State-of-the-Art, Technologies, Applications, and Challenges, IEEE Internet of Things Journal, 2023, 10: 14671- 88. https://doi.org/10.1109/JIOT.2023.3278329

Dionisio, J. D. N.; III, W. G. B., Gilbert, R. (2013). 3D Virtual worlds and the metaverse: Current status and future possibilities, ACM Comput Surv, 2013, 45(3): Article 34. https://doi.org/10.1145/2480741.2480751

Park, S-M; Kim, Y-G. (2022). A Metaverse: Taxonomy, Components, Applications, and Open Challenges, IEEE Access, 2022, 10: 4209-51. https://doi.org/10.1109/ACCESS.2021.3140175

Zainab, H.E.; Bawany, N.Z.; Imran, J. & Rehman, W. (2022). Virtual Dimension-A Primer to Metaverse, IT Professional, 24, 27-33. https://doi.org/10.1109/MITP.2022.3203820

Weinberger, M.; Gross, D. (2023). A Metaverse Maturity Model, Global Journal of Computer Science and Technology, 2023. https://doi.org/10.34257/GJCSTHVOL22IS2PG39

Pamučar, D.; Deveci, M.; Gokasar, I. et al. (2022). A metaverse assessment model for sustainable transportation using ordinal priority approach and Aczel-Alsina norms, Technological Forecasting and Social Change, 2022. https://doi.org/10.1016/j.techfore.2022.121778

Jin, Y.; Zhang, H.; Zhao, L. et al. (2023). Data driven improvement of user perception in mobile business halls, Communication World, 2023, (20): 40-1.

Song, Y.N.; Li, Z.; Wang, Y. et al. (2023). Research on data-driven spatial situational entity cognition methods, The 11th China Command and Control Conference, Beijing, China, F, 2023 [C].

Li, Y.P. (2023). Data driven decision-making: key factors in smart library management, Culture Monthly, 2023, (09): 120-2.

Wu, H.; Liu, J.H.; Zhu, H. et al. (2023). Data driven traffic signal control perception evaluation diagnosis optimization closed-loop technology (II): State perception, Road Traffic Management, 2023, (09): 28-31.

Yu, J. E. (2022). Exploration of educational possibilities by four metaverse types in physical education, Technologies, 10(5), 104. https://doi.org/10.3390/technologies10050104

VİSCONTİ, R. M. (2022). From physical reality to the Metaverse: a Multilayer Network Valuation, Journal of Metaverse, 2(1), 16-22.

Eom, H.; Kim, K.; Lee, S. et al. (2019). Development of virtual reality continuous performance test utilizing social cues for children and adolescents with attention-deficit/hyperactivity disorder, Cyberpsychology, Behavior, and Social Networking, 2019, 22(3): 198-204. https://doi.org/10.1089/cyber.2018.0377

SOLOMATINE, D. P.; SEE, L. M.; ABRAHART, R. J. (2017). Chapter 2 Data-Driven Modelling, Concepts , Approaches and Experiences, F, 2017 [C].

Park, S. M. & Kim, Y. G. (2022). A Metaverse: Taxonomy, Components, Applications, and Open Challenges, IEEE Access, 10, 4209-4251. https://doi.org/10.1109/ACCESS.2021.3140175

DAMAR, M. (2021). Metaverse Shape of Your Life for Future: A bibliometric snapshot, Journal of Metaverse, 1(1), 1-8.

Njoku, J. N.; Nwakanma, C. I.; Amaizu, G. C. & Kim, D. S. (2023). Prospects and challenges of Metaverse application in data-driven intelligent transportation systems, IET Intelligent Transport Systems, 17(1), 1-21. https://doi.org/10.1049/itr2.12252

Guston, D. H. & Sarewitz, D. (2020). Real-time technology assessment, In Emerging Technologies, (pp. 231-247). Routledge. https://doi.org/10.4324/9781003074960-21

Zhang, D. (2017). High-speed train control system big data analysis based on the fuzzy RDF model and uncertain reasoning, International Journal of Computers Communications & Control, 12(4), 577-591. https://doi.org/10.15837/ijccc.2017.4.2914

Zhang, D.; Sui, J. & Gong, Y. (2017). Large scale software test data generation based on collective constraint and weighted combination method, Tehnicki Vjesnik/Technical Gazette, 24(4). https://doi.org/10.17559/TV-20170319045945

Chen, W. (2023). Deep adversarial neural network model based on information fusion for music sentiment analysis, Computer Science and Information Systems, (00), 31-31.

Dzitac, I.; Filip, F. G. & Manolescu, M. J. (2017). Fuzzy logic is not fuzzy: World-renowned computer scientist Lotfi A. Zadeh, International Journal of Computers Communications & Control, 12(6), 748-789. https://doi.org/10.15837/ijccc.2017.6.3111

Filip, F. G. (2022). Collaborative decision-making: concepts and supporting information and communication technology tools and systems, International Journal of Computers Communications & Control, 17(2). https://doi.org/10.15837/ijccc.2022.2.4732

Constantinescu, Z.; Marinoiu, C. & Vladoiu, M. (2010). Driving style analysis using data mining techniques, International Journal of Computers Communications & Control, 5(5), 654-663. https://doi.org/10.15837/ijccc.2010.5.2221

Lyu, Z. (2023). State-of-the-art human-computer-interaction in metaverse, International Journal of Human-Computer Interaction, 1-19. https://doi.org/10.1080/10447318.2023.2248833

Additional Files

Published

2024-07-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.