Deep Learning-based Intelligent Fault Diagnosis for Power Distribution Networks

Authors

  • Jingzhi Liu State Grid Qinghai Electric Power Company Electric Power Research Institute, Xining, Qinghai, 810008, China
  • Quanlei Qu State Grid Qinghai Electric Power Company Electric Power Research Institute, Xining, Qinghai, 810008, China
  • Hongyi Yang State Grid Qinghai Electric Power Company Electric Power Research Institute, Xining, Qinghai, 810008, China
  • Jianming Zhang State Grid Qinghai Electric Power Company Electric Power Research Institute, Xining, Qinghai, 810008, China
  • Zhidong Liu State Grid Qinghai Electric Power Company Electric Power Research Institute, Xining, Qinghai, 810008, China

DOI:

https://doi.org/10.15837/ijccc.2024.4.6607

Keywords:

Distributed power supply; Distribution network; Condor search algorithm; Deep residual network; Residual shrinkage module

Abstract

Power distribution networks with distributed generation (DG) face challenges in fault diagnosis due to the high uncertainty, randomness, and complexity introduced by DG integration. This study proposes a two-stage approach for fault location and identification in distribution networks with DG. First, an improved bald eagle search algorithm combined with the Dijkstra algorithm (D-IBES) is developed for fault location. Second, a fusion deep residual shrinkage network (FDRSN) is integrated with IBES and support vector machine (SVM) to form the FDRSN-IBS-SVM model for fault identification. Experimental results showed that the D-IBES algorithm achieved a CPU loss rate of 0.54% and an average time consumption of 1.70 seconds in complex scenarios, outperforming the original IBES algorithm. The FDRSN-IBS-SVM model attained high fault identification accuracy (99.05% and 98.54%) under different DG output power levels and maintained robustness (97.89% accuracy and 97.54% recall) under 5% Gaussian white noise. The proposed approach demonstrates superior performance compared to existing methods and provides a promising solution for intelligent fault diagnosis in modern distribution networks.

References

Petrou, K.; Procopiou, A.; Gutierrez, L.; Liu, M.; Ochoa, L. & Langstaff, T. (2021). Ensuring distribution network integrity using dynamic operating limits for prosumers, IEEE Transactions on Smart Grid, 12(5), 3877-3888. https://doi.org/10.1109/TSG.2021.3081371

Ge, X.; Han, Q. L.; Ding, L.; Wang, Y. & Zhang, X. (2020). Dynamic event-triggered distributed coordination control and its applications: A survey of trends and techniques, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(9), 3112-3125. https://doi.org/10.1109/TSMC.2020.3010825

J, Yu.; and X, Zhou. (2020). One-dimensional residual convolutional autoencoder based feature learning for gearbox fault diagnosis, In IEEE Transactions on Industrial Informatics, 16(10), 6347-6358. https://doi.org/10.1109/TII.2020.2966326

Zhao, X.; Jia, M. & Liu, Z. (2020). Semisupervised graph convolution deep belief network for fault diagnosis of electormechanical system with limited labeled data, IEEE Transactions on Industrial Informatics, 17(8), 5450-5460. https://doi.org/10.1109/TII.2020.3034189.

Cao, X.; Xu, X.; Duan, Y. & Yang, X. (2022). Health status recognition of rotating machinery based on deep residual shrinkage network under time-varying conditions, IEEE Sensors Journal, 22(19), 18332-18348. https://doi.org/10.1109/JSEN.2022.3197754

`

Sattler, F.; Müller, K. R. & Samek, W. (2020). lustered federated learning: Model-agnostic distributed multitask optimization under privacy constraints, IEEE transactions on neural networks and learning systems, 32(8), 3710-3722. https://doi.org/10.48550/arXiv.1910.01991

John, Y.; Sanusi, A.; Yusuf, I. & Modibbo, U. (2023). Reliability analysis of multihardware– software system with failure interaction, Journal of Computational and Cognitive Engineering, 2(1), 38-46. https://doi.org/10.47852/bonviewJCCE2202216

Muthukrishnan, S.; Krishnaswamy, H.; Thanikodi, S.; Sundaresan, D. & Venkatraman, V. (2020). Support vector machine for modelling and simulation of heat exchangers, Thermal Science, 24(1), 499-503. https://doi.org/10.2298/tsci190419398m

Zhang, W.; Chang, Z.; Zhang, C.; Song, G. & Tan, W. (2022). A quick fault location and isolation method for distribution network based on adaptive reclosing, IET Generation, Transmission & Distribution, 16(4), 715-723. https://doi.org/10.1049/gtd2.12322

Chen, Y.; Yin, J.; Li, Z. & Wei, R. (2021). Location for single-phase grounding fault in distribution network based on equivalent admittance distortion rate, IET Generation, Transmission & Distribution, 15(11), 1716-1729. https://doi.org/10.1049/gtd2.12128

Khani, M.; Ghazi, R. & Nazari, B. (2020). Decision support system for optimal location of HIFDs in real distribution network using an integrated EPSO-fuzzy AHP model, IET generation, transmission & distribution, 14(9), 1616-1626. https://doi.org/10.1049/iet-gtd.2018.6696

Mohajer, F. & Sadeh, J. (2022). Accurate fault location method for distribution network in presence of DG using distributed time-domain line model, IET generation, transmission & distribution, 16(7), 1305-1318. https://doi.org/10.1049/gtd2.12367

Liao, W.; Yang, D.; Wang, Y. & Ren, X. (2020). Fault diagnosis of power transformers using graph convolutional network, CSEE Journal of Power and Energy Systems, 7(2), 241-249. https://doi.org/10.17775/CSEEJPES.2020.04120

Zou, M.; Zhao, Y.; Yan, D.; Tang, X.; Duan, P. & Liu, S. (2022) Double convolutional neural network for fault identification of power distribution network, Electric Power Systems Research, 210(9), 1-11. https://doi.org/10.1016/j.epsr.2022.108085

Hosseini, Z.; Khodaei, A. & Paaso, A. (2020). Machine learning-enabled distribution network phase identification, IEEE Transactions on Power Systems, 36(2), 842-850. https://doi.org/10.1109/TPWRS.2020.3011133

Shao, H.; Xia, M.; Han, G.; Zhang, Y. & Wan, J. (2020). Intelligent fault diagnosis of rotorbearing system under varying working conditions with modified transfer convolutional neural network and thermal images, IEEE Transactions on Industrial Informatics, 17(5), 3488-3496. https://doi.org/10.1109/TII.2020.3005965.

Li, Y.; Gao, D. W.; Gao, W.; Zhang, H. & Zhou, J. (2020). A distributed doublenewton descent algorithm for cooperative energy management of multiple energy bodies in energy internet, IEEE Transactions on Industrial Informatics, 17(9), 5993-6003. https://doi.org/10.1109/TII.2020.3029974

Zhang, G.; Zhang, F.; Zhang, X.; Wang, Z.; Meng, K. & Dong, Z. (2020). Mobile emergency generator planning in resilient distribution systems: A three-stage stochastic model with nonanticipativity constraints, IEEE Transactions on Smart Grid, 11(6), 4847-4859. https://doi.org/10.1109/TSG.2020.3003595

Dong, Y.; Xia, C.; Yang, J.; Cao, Y.; Cao, Y. & Li, X. (2021). Spatio-temporal 3-D residual networks for simultaneous detection and depth estimation of CFRP subsurface defects in lock-in thermography, IEEE Transactions on Industrial Informatics, 18(4), 2571-2581. https://doi.org/10.1109/TII.2021.3103019

Zhang, L.; Yang, X.; Liu, H.; Zhang, H. & Cheng, J. (2021). Efficient residual shrinkage CNN denoiser design for intelligent signal processing: Modulation recognition, detection, and decoding, IEEE Journal on Selected Areas in Communications, 40(1), 97-111. https://doi.org/10.1109/JSAC.2021.3126074

Chen, K.; Hu, J.; Zhang, Y.; Yu, Z. & He, J. (2019). Fault location in power distribution systems via deep graph convolutional networks, IEEE Journal on Selected Areas in Communications, 38(1), 119-131. https://doi.org/10.1109/JSAC.2019.2951964

Tomašević, Dž., Konjić, T. & Kasapović, S. (2022). Impact Assessment of the Power Line Channel Characteristics in Real Topology, Tehnički vjesnik, 29 (2), 386-394. https://doi.org/10.17559/TV- 20200610115005

Zhao, Y.; Liu, S.; Lin, Z.; Yang, L.; Gao, Q. & Chen, Y. (2020). Identification of critical lines for enhancing disaster resilience of power systems with renewables based on complex network theory, IET Generation, Transmission & Distribution, 14(20), 4459-4467. https://doi.org/10.1049/ietgtd. 2019.1853

Sarp, S.; Kuzlu, M.; Zhao, Y.; Cetin, M.; Guler, O. (2022). A Comparison of Deep Learning Algorithms on Image Data for Detecting Floodwater on Roadways, Computer Science and Information Systems, 19(1), 397-414. , https://doi.org/10.2298/CSIS210313058S

Arul Jothi S, Venkatesan R. (2023). A Deep Learning Approach for Efficient Anomaly Detection in WSNs, International Journal of Computers Communications & Control, 18(1), 1-21. https://doi.org/10.15837/ijccc.2023.1.4756

Additional Files

Published

2024-07-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.