Fault Diagnosis and Localization of Transmission Lines Based on R-Net Algorithm Optimized by Feature Pyramid Network

Authors

  • Chunmei Zhang Guangdong Power Grid Co., Ltd., Zhongshan Power Supply Bureau, Zhongshan, Guangdong, 528400, China
  • Xingque Xu Guangdong Power Grid Co., Ltd., Zhongshan Power Supply Bureau, Zhongshan, Guangdong, 528400, China
  • Silin Liu Guangdong Power Grid Co., Ltd., Zhongshan Power Supply Bureau, Zhongshan, Guangdong, 528400, China
  • Yongjian Li Guangdong Power Grid Co., Ltd., Zhongshan Power Supply Bureau, Zhongshan, Guangdong, 528400, China
  • Jiefeng Jiang Guangdong Power Grid Co., Ltd., Zhongshan Power Supply Bureau, Zhongshan, Guangdong, 528400, China

DOI:

https://doi.org/10.15837/ijccc.2024.4.6608

Keywords:

Deep learning; Transmission lines; Fault; Convolutional neural network; Feature pyramid network

Abstract

Timely fault diagnosis and localization of transmission lines is crucial for ensuring the reliable operation of increasingly complex power systems. This study proposes an optimized R-Net algorithm based on a feature pyramid network (FPN) and densely connected convolutional network (D-Net) for transmission line fault diagnosis and localization. The R-Net network is enhanced by reshaping the anchor points using an improved K-means algorithm and incorporating an FPN for multi-scale feature extraction. The backbone network is further optimized using D-Net to strengthen inter-layer connections and improve feature reuse. Experimental results demonstrate that the optimized R-Net achieves an overall average accuracy of 0.64, outperforming the original network by 1.30%. The accuracy improvement is particularly significant for ground wire defects (2.40%). The D-Net-based R-Net, despite having fewer parameters, maintains high accuracy (0.6502). Compared to other object detection algorithms, such as YOLO-v3 and Faster R-CNN, the optimized R-Net exhibits superior performance in terms of mean average precision (15.58% and 2.45% higher, respectively) and parameter efficiency (17M vs. 38M and 81M). Considering both performance and speed, the optimized R-Net achieves a processing rate of 10.5 frames per second. This study provides an efficient and accurate tool for transmission line fault diagnosis and localization, with significant practical implications for power system operation and maintenance.

References

Guo, Y.; Mustafaoglu, Z. & Koundal, D. (2022). Spam detection using bidirectional transformers and machine learning classifier algorithms, Journal of Computational and Cognitive Engineering, 2(1), 5-9. https://doi.org/10.47852/bonviewJCCE2202192

Jia, Y.; Shang, L.; Nan, J.; Hu, G. & Fang, Z. (2022). CFD analysis of fluiddynamic and heat transfer effects generated by a fixed electricity transmission line interacting with an external wind, Fluid Mechanics and Material Processing, 18(2), 329-344. https://doi.org/10.32604/fdmp.2022.017734

Karimi, S.; Dawson, L.; Musilek, P. & Knight, M. (2022). Forecast of transmission line clearance using quantile regression-based weather forecasts, In IET Generation, Transmission & Distribution, 16(8), 1639-1647. https://doi.org/10.1049/gtd2.12390

Rajesh, P.; Kannan, R. & Vishnupriyan, J. (2022). Optimally detecting and classifying the transmission line fault in power system using hybrid technique, ISA Transactions, 130(3), 253-264. https://doi.org/10.1016/j.isatra.2022.03.017

Fang, B.; Jiang, M. & Shen, J. (2022). Deep generative inpainting with comparative sample augmentation, Journal of Computational and Cognitive Engineering, 1(4), 174-180. https://doi.org/10.47852/bonviewJCCE2202319

Goughari, R. S.; Shahbazzadeh, M. J. & Eslami, M. (2020). Detecting faults in VSC-HVDC systems by deep learning and K-means, Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering), 14(4), 515-524. https://doi.org/10.2174/2352096513999201105155206

Fu, Y.; Guo, X.; Mi, Y.; Yuan, M.; Ge, X.; Su, X. & Li, Z. (2021). The distributed economic dispatch of smart grid based on deep reinforcement learning, IET Generation Transmission & Distribution, 15(18), 2645-2658. https://doi.org/10.1049/gtd2.12206

Tong, H.; Qiu, R. C.; Zhang, D.; Yang, H.; Ding, Q. & Shi, X. (2021). Detection and classification of transmission line transient faults based on graph convolutional neural network, CSEE Journal of Power and Energy Systems, 7(3), 456-471. https://doi.org/10.17775/CSEEJPES.2020.04970

Athamneh, A. A.; Alqudah, A. M. & Aqeil, R. F. (2021). Line voltage-based distance relay using a multistage convolutional neural network classifier, International Review of Electrical Engineering, 16(6), 553-565. https://doi.org/10.15866/iree.v16i6.20962

Tan, J. (2021). Automatic insulator detection for power line using aerial images powered by convolutional neural networks, Journal of Physics: Conference Series, 1748(4), 1742-6596. https://doi.org/10.1088/1742-6596/1748/4/042012

Mohammadi, S. F.; Mohsen, A. S.; Mengchu, Z. & Abusorrah, A. (2023). Application of machine learning methods in fault detection and classification of power transmission lines: a survey, Artificial Intelligence Review: An International Science and Engineering Journal, 56(7), 5799-5836. https://doi.org/10.1007/s10462-022-10296-0

Shakiba, F. M.; Shojaee, M.; Azizi, S. M. & Zhou, M. (2022). Generalized fault diagnosis method of transmission lines using transfer learning technique, Neurocomputing, 500(8), 556-566. https://doi.org/10.1016/j.neucom.2022.05.022

Azizi, S. M.; Shakiba, F. M. & Zhou, M. (2022). A transfer learning-based method to detect insulator faults of high-voltage transmission lines via aerial images: distinguishing intact and broken insulator images, IEEE Systems, Man, and Cybernetics Magazine, 8(4), 15-25. https://doi.org/10.1109/MSMC.2022.3198027

Qiu, Z.; Zhu, X.; Liao, C.; Shi, D.; Kuang, Y.; Li, Y. & Zhang, Y. (2022). Detection of bird species related to transmission line faults based on lightweight convolutional neural network, IET Generation, Transmission & Distribution, 16(5), 869-881. https://doi.org/10.1049/gtd2.12333

Gao, M. & Zhang, W. (2021). Power transmission line anomaly detection scheme based on CNN-transformer model, International Journal of Grid and Utility Computing, 12(4), 388-395. https://doi.org/10.1504/ijguc.2021.119565

Nimrah, S. & Saifullah, S. (2022). Context-Free Word Importance Scores for Attacking Neural Networks, Journal of Computational and Cognitive Engineering, 1(4), 187-192. https://doi.org/10.47852/bonviewJCCE2202406

Yang, Y. & Song, X. (2022). Research on face intelligent perception technology integrating deep learning under different illumination intensities, Journal of Computational and Cognitive Engineering, 1(1), 32-36. https://doi.org/10.47852/bonviewJCCE19919

Dehghani, M.; Kavousifard, A.; Dabbaghjamanesh, M. & Avatefipoir, O. (2020). Deep learning based method for false data injection attack detection in AC smart islands, IET Generation, Transmission & Distribution, 14(24), 5756-5765. https://doi.org/10.1049/iet-gtd.2020.0391

Liu, Z.; Tan, H. J. & Fan, S. S. (2022). A wide range on-line energy acquisition method for transmission lines based on resonant choke coil, IET Power Electronics, 15(11), 1047-1057. https://doi.org/10.1049/pel2.12288

Cheng, Y.; Wan, Y.; Sima, Y.; Zhang, Y.; Hu, S. & Wu, S. (2022). Text Detection of Transformer Based on Deep Learning Algorithm, Tehnički vjesnik, 29 (3), 861-866. https://doi.org/10.17559/TV-20211027110610

Sun, H.; Liu, M.; Qing, Z. & Miller, C. (2020). A self-adapting multi-LSTM ensemble regression mode for failure prediction of transmission line network from wireless mesh nodes’ data, Journal of Computational Methods in Sciences and Engineering, 21(1), 903-911. https://doi.org/10.3233/JCM-204550

Deng, X.; Li, J.; Ma, C.; Wei, K.; Shi, L.; Ding, M. & Chen, W. (2023). Low-latency federated learning with dnn partition in distributed industrial iot networks, IEEE Journal on Selected Areas in Communications, 41(3), 755-775. https://doi.org/10.1109/JSAC.2022.329436

Lu, Y.; Wei, G. & Jiao, S. (2022). Soil multitrophic network complexity enhances the link between biodiversity and multifunctionality in agricultural systems, Global Change Biology, 28(1), 140-153. https://doi.org/10.1111/gcb.15917

Shi, Y.; Xue, X. D.; Xue, J. Y. & Qu, Y. (2022). Fault Detection in Nuclear Power Plants using Deep Leaning based Image Classification with Imaged Time-series Data., International Iournal of Computers Communications & Control, 17(1), 1-31. https://doi.org/10.15837/ijccc.2022.1.4714

Xia, B.; Han, D.; Yin, X.; Gao, N. (2022). RICNN: A ResNet & Inception Convolutional Neural Network for Intrusion Detection of Abnormal Traffic, Computer Science and Information Systems, 19(1), 309-326. https://doi.org/10.2298/CSIS210617055X

Additional Files

Published

2024-07-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.