Holiday Peak Load Forecasting Using Grammatical Evolution-Based Fuzzy Regression Approach

Authors

  • Guo Li State Grid Commercial Big Data Co., Ltd., China
  • Xiang Hu State Grid Commercial Big Data Co., Ltd., China
  • Shuyi Chen State Grid Commercial Big Data Co., Ltd., China
  • Kaixuan Chang State Grid Commercial Big Data Co., Ltd., China
  • Peiqi Li State Grid Commercial Big Data Co., Ltd., China
  • Yujue Wang State Grid Commercial Big Data Co., Ltd., China

DOI:

https://doi.org/10.15837/ijccc.2024.4.6611

Keywords:

Load forecasting, fuzzy nonlinear model, grammatical evolution, artificial bee colony algorithm

Abstract

Peak load forecasting plays an important role in electric utilities. However, the daily peak load forecasting problem, especially for holidays, is fuzzy and highly nonlinear. In order to address the nonlinearity and fuzziness of the holiday load behaviors, a grammatical evolution-based fuzzy regression approach is proposed in this paper. The proposed hybrid approach is based on the theorem that fuzzy polynomial regression can model all fuzzy functions. It employs the rules of the grammatical evolution to generate fuzzy nonlinear structures in polynomial form. Then, a two-stage fuzzy regression approach is used to determine the coefficients and calculate the fitness of the fuzzy functions. An artificial bee colony algorithm is used as the evolution system to update the elements of the grammatical evolution system. The process is repeated until a fuzzy model that best fits the load data is found. After that, the developed fuzzy nonlinear model is applied to forecast holiday peak load. Considering that different holidays possess different load patterns, a separate forecaster model is built for each holiday. Test results on real load data show that an averaged absolute percent error less than 2% can be achieved, which significantly outperforms existing methods involved in the comparison.

References

Maksimovich, S.M.; Shiljkut, V.M. (2009). The Peak Load Forecasting Afterwards Its Intensive Reduction, IEEE Trans. Power Del., 24(3), 1552-1559, 2009. https://doi.org/10.1109/TPWRD.2009.2014267

Nazarko, J.;Zalewski, W. (1999). The fuzzy regression approach to peak load estimation in power distribution systems, IEEE Trans. Power Syst., 14(3), 809-814, 1999. https://doi.org/10.1109/59.780890

Negnevitsky, M.; Mandal, P.;Srivastava, A.K. (2009). An overview of forecasting problems and techniques in power systems, In Proc. 2009 IEEE Power Energy Soc. Gen. Meet., Calgary, Canada, 1-4, 2009. https://doi.org/10.1109/PES.2009.5275480

Haida, T.; Muto, S. (1994). Regression based peak load forecasting using a transformation technique,, IEEE Trans. Power Syst., 9(4), 1788-1794, 1994. https://doi.org/10.1109/59.331433

Huang, S.J.; Shih, K.R. (2003). Short-term load forecasting via ARMA model identification including non-Gaussian process considerations, IEEE Trans. Power Syst., 18(2), 673-679, 2003. https://doi.org/10.1109/TPWRS.2003.811010

Hagan, M.T.; Behr, S.M. (1987). The Time Series Approach to Short Term Load Forecasting, IEEE Trans. Power Syst., 2(3), 785-791, 1987. https://doi.org/10.1109/TPWRS.1987.4335210

Guan, C.; Luh, P.B.; Michel, L.D.; Chi, Z. (2013). Hybrid Kalman Filters for Very Short-Term Load Forecasting and Prediction Interval Estimation, IEEE Trans. Power Syst., 28(4), 3806-3817, 2013. https://doi.org/10.1109/TPWRS.2013.2264488

Matijaš, M.; Suykens, J.A.; Krajcar, S. (2013). Load forecasting using a multivariate metalearning system, Expert Syst. Appl., 40(11), 4427-4437, 2013. https://doi.org/10.1016/j.eswa.2013.01.047

Hippert, H.S.; Pedreira, C.E.; Souza, R.C. (2001); Neural networks for short-term load forecasting: a review and evaluation, IEEE Trans. Power Syst., 16(1), 44-55, 2001. https://doi.org/10.1109/59.910780

Hinojosa, V.H.; Hoese, A. (2010). Short-Term Load Forecasting Using Fuzzy Inductive Reasoning and Evolutionary Algorithms, IEEE Trans. Power Syst, 25(1), 565-574, 2010. https://doi.org/10.1109/TPWRS.2009.2036821

Elattar, E.E.; Goulermas, J.; Wu, Q.H. (2010). Electric Load Forecasting Based on Locally Weighted Support Vector Regression, IEEE Trans. Syst., 40(4), 438-447, 2010. https://doi.org/10.1109/TSMCC.2010.2040176

Arora, S.; Taylor, J.W. (2013); Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods, IEEE Trans. Power Syst., 28(3), 3235-3242, 2013. https://doi.org/10.1109/TPWRS.2013.2252929

Song, K.B.; Baek, Y.S.; Hong, D.H.; Jang, G. (2005). Short-term load forecasting for the holidays using fuzzy linear regression method, IEEE Trans. Power Syst., 20(1), 96-101, 2005. https://doi.org/10.1109/TPWRS.2004.835632

Song, K.B.;Ha, S.K., Park, J.W.; Kweon, D.J.; Kim, K.H. (2006). Hybrid load forecasting method with analysis of temperature sensitivities, IEEE Trans. Power Syst., 21(2), 869-876, 2006. https://doi.org/10.1109/TPWRS.2006.873099

Wi, Y.M.; Joo, S.K.; Song, K.B. (2012). Holiday Load Forecasting Using Fuzzy Polynomial Regression With Weather Feature Selection and Adjustment, IEEE Trans. Power Syst., 27(2), 596-603, 2012. https://doi.org/10.1109/TPWRS.2011.2174659

Buckley, J.J.; Feuring, T. (2000). Linear and non-linear fuzzy regression: Evolutionary algorithm solutions, Fuzzy Sets Syst., 112(3), 381-394, 2000. https://doi.org/10.1016/S0165-0114(98)00154-7

Jiang, H.; Kwong, C.K.; Ip, W.H.; Chen, Z. (2013). Chaos-Based Fuzzy Regression Approach to Modeling Customer Satisfaction for Product Design, IEEE Trans. Fuzzy Syst., 21(5), 926-936, 2013. https://doi.org/10.1109/TFUZZ.2012.2236841

O'Neill, M.; Ryan, C. (2001). Grammatical evolution, IEEE Trans. Evol. Comput., 5(4), 349-358, 2001. https://doi.org/10.1109/4235.942529

Chan, K.Y.; Dillon, T.S.; Kwong, C.K. (2011). Modeling of a Liquid Epoxy Molding Process Using a Particle Swarm Optimization-Based Fuzzy Regression Approach, IEEE Trans. Ind. Informat., 7(1), 148-158, 2011. https://doi.org/10.1109/TII.2010.2100130

Tanaka, H.; Uejima, S.; Asai, K. (1982). Linear regression analysis with fuzzy model, IEEE Trans. Syst., Man, Cybern 12(6), 903-907, 1982. https://doi.org/10.1109/TSMC.1982.4308925

Chen, L.H.; Hsueh, C.C. (2009). Fuzzy Regression Models Using the Least-Squares Method Based on the Concept of Distance, IEEE Trans. Fuzzy Syst., 17(6), 1259-1272, 2009. https://doi.org/10.1109/TFUZZ.2009.2026891

Hong, D.H.; Lee, S.; Do, H.Y. (2001). Fuzzy linear regression analysis for fuzzy input-output data using shape-preserving operations, Fuzzy Sets Syst., 122(3), 513-526, 2001. https://doi.org/10.1016/S0165-0114(00)00003-8

Chen, L.H.; Hsueh, C.C.; Chang, C.J. (2013). A two-stage approach for formulating fuzzy regression models, Knowl.-Based Syst., 52(1), 302-310, 2013. https://doi.org/10.1016/j.knosys.2013.08.010

Karaboga, D.; Basturk, B. (2007). A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, J. Global Optimiz., 39(3), 459-471, 2007. https://doi.org/10.1007/s10898-007-9149-x

Abu-Mouti, F.S.; El-Hawary, M.E. (2011). Optimal Distributed Generation Allocation and Sizing in Distribution Systems via Artificial Bee Colony Algorithm, IEEE Trans. Power Del., 26(4), 2090-2101, 2011. https://doi.org/10.1109/TPWRD.2011.2158246

Todorovic, N.; Petrovic, S. (2013). Bee Colony Optimization Algorithm for Nurse Rostering, IEEE Trans. Syst.,Man, Cybern.,Syst., 43(2), 467-473, 2013. https://doi.org/10.1109/TSMCA.2012.2210404

Vural, R.A.; Yildirim, T.; Kadioglu, T.; Basargan, A. (2012). Performance Evaluation of Evolutionary Algorithms for Optimal Filter Design, IEEE Trans. Evol. Comput., 16(1), 135-147, 2012. https://doi.org/10.1109/TEVC.2011.2112664

Additional Files

Published

2024-07-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.