Holiday Peak Load Forecasting Using Grammatical Evolution-Based Fuzzy Regression Approach
DOI:
https://doi.org/10.15837/ijccc.2024.4.6611Keywords:
Load forecasting, fuzzy nonlinear model, grammatical evolution, artificial bee colony algorithmAbstract
Peak load forecasting plays an important role in electric utilities. However, the daily peak load forecasting problem, especially for holidays, is fuzzy and highly nonlinear. In order to address the nonlinearity and fuzziness of the holiday load behaviors, a grammatical evolution-based fuzzy regression approach is proposed in this paper. The proposed hybrid approach is based on the theorem that fuzzy polynomial regression can model all fuzzy functions. It employs the rules of the grammatical evolution to generate fuzzy nonlinear structures in polynomial form. Then, a two-stage fuzzy regression approach is used to determine the coefficients and calculate the fitness of the fuzzy functions. An artificial bee colony algorithm is used as the evolution system to update the elements of the grammatical evolution system. The process is repeated until a fuzzy model that best fits the load data is found. After that, the developed fuzzy nonlinear model is applied to forecast holiday peak load. Considering that different holidays possess different load patterns, a separate forecaster model is built for each holiday. Test results on real load data show that an averaged absolute percent error less than 2% can be achieved, which significantly outperforms existing methods involved in the comparison.
References
Maksimovich, S.M.; Shiljkut, V.M. (2009). The Peak Load Forecasting Afterwards Its Intensive Reduction, IEEE Trans. Power Del., 24(3), 1552-1559, 2009. https://doi.org/10.1109/TPWRD.2009.2014267
Nazarko, J.;Zalewski, W. (1999). The fuzzy regression approach to peak load estimation in power distribution systems, IEEE Trans. Power Syst., 14(3), 809-814, 1999. https://doi.org/10.1109/59.780890
Negnevitsky, M.; Mandal, P.;Srivastava, A.K. (2009). An overview of forecasting problems and techniques in power systems, In Proc. 2009 IEEE Power Energy Soc. Gen. Meet., Calgary, Canada, 1-4, 2009. https://doi.org/10.1109/PES.2009.5275480
Haida, T.; Muto, S. (1994). Regression based peak load forecasting using a transformation technique,, IEEE Trans. Power Syst., 9(4), 1788-1794, 1994. https://doi.org/10.1109/59.331433
Huang, S.J.; Shih, K.R. (2003). Short-term load forecasting via ARMA model identification including non-Gaussian process considerations, IEEE Trans. Power Syst., 18(2), 673-679, 2003. https://doi.org/10.1109/TPWRS.2003.811010
Hagan, M.T.; Behr, S.M. (1987). The Time Series Approach to Short Term Load Forecasting, IEEE Trans. Power Syst., 2(3), 785-791, 1987. https://doi.org/10.1109/TPWRS.1987.4335210
Guan, C.; Luh, P.B.; Michel, L.D.; Chi, Z. (2013). Hybrid Kalman Filters for Very Short-Term Load Forecasting and Prediction Interval Estimation, IEEE Trans. Power Syst., 28(4), 3806-3817, 2013. https://doi.org/10.1109/TPWRS.2013.2264488
Matijaš, M.; Suykens, J.A.; Krajcar, S. (2013). Load forecasting using a multivariate metalearning system, Expert Syst. Appl., 40(11), 4427-4437, 2013. https://doi.org/10.1016/j.eswa.2013.01.047
Hippert, H.S.; Pedreira, C.E.; Souza, R.C. (2001); Neural networks for short-term load forecasting: a review and evaluation, IEEE Trans. Power Syst., 16(1), 44-55, 2001. https://doi.org/10.1109/59.910780
Hinojosa, V.H.; Hoese, A. (2010). Short-Term Load Forecasting Using Fuzzy Inductive Reasoning and Evolutionary Algorithms, IEEE Trans. Power Syst, 25(1), 565-574, 2010. https://doi.org/10.1109/TPWRS.2009.2036821
Elattar, E.E.; Goulermas, J.; Wu, Q.H. (2010). Electric Load Forecasting Based on Locally Weighted Support Vector Regression, IEEE Trans. Syst., 40(4), 438-447, 2010. https://doi.org/10.1109/TSMCC.2010.2040176
Arora, S.; Taylor, J.W. (2013); Short-Term Forecasting of Anomalous Load Using Rule-Based Triple Seasonal Methods, IEEE Trans. Power Syst., 28(3), 3235-3242, 2013. https://doi.org/10.1109/TPWRS.2013.2252929
Song, K.B.; Baek, Y.S.; Hong, D.H.; Jang, G. (2005). Short-term load forecasting for the holidays using fuzzy linear regression method, IEEE Trans. Power Syst., 20(1), 96-101, 2005. https://doi.org/10.1109/TPWRS.2004.835632
Song, K.B.;Ha, S.K., Park, J.W.; Kweon, D.J.; Kim, K.H. (2006). Hybrid load forecasting method with analysis of temperature sensitivities, IEEE Trans. Power Syst., 21(2), 869-876, 2006. https://doi.org/10.1109/TPWRS.2006.873099
Wi, Y.M.; Joo, S.K.; Song, K.B. (2012). Holiday Load Forecasting Using Fuzzy Polynomial Regression With Weather Feature Selection and Adjustment, IEEE Trans. Power Syst., 27(2), 596-603, 2012. https://doi.org/10.1109/TPWRS.2011.2174659
Buckley, J.J.; Feuring, T. (2000). Linear and non-linear fuzzy regression: Evolutionary algorithm solutions, Fuzzy Sets Syst., 112(3), 381-394, 2000. https://doi.org/10.1016/S0165-0114(98)00154-7
Jiang, H.; Kwong, C.K.; Ip, W.H.; Chen, Z. (2013). Chaos-Based Fuzzy Regression Approach to Modeling Customer Satisfaction for Product Design, IEEE Trans. Fuzzy Syst., 21(5), 926-936, 2013. https://doi.org/10.1109/TFUZZ.2012.2236841
O'Neill, M.; Ryan, C. (2001). Grammatical evolution, IEEE Trans. Evol. Comput., 5(4), 349-358, 2001. https://doi.org/10.1109/4235.942529
Chan, K.Y.; Dillon, T.S.; Kwong, C.K. (2011). Modeling of a Liquid Epoxy Molding Process Using a Particle Swarm Optimization-Based Fuzzy Regression Approach, IEEE Trans. Ind. Informat., 7(1), 148-158, 2011. https://doi.org/10.1109/TII.2010.2100130
Tanaka, H.; Uejima, S.; Asai, K. (1982). Linear regression analysis with fuzzy model, IEEE Trans. Syst., Man, Cybern 12(6), 903-907, 1982. https://doi.org/10.1109/TSMC.1982.4308925
Chen, L.H.; Hsueh, C.C. (2009). Fuzzy Regression Models Using the Least-Squares Method Based on the Concept of Distance, IEEE Trans. Fuzzy Syst., 17(6), 1259-1272, 2009. https://doi.org/10.1109/TFUZZ.2009.2026891
Hong, D.H.; Lee, S.; Do, H.Y. (2001). Fuzzy linear regression analysis for fuzzy input-output data using shape-preserving operations, Fuzzy Sets Syst., 122(3), 513-526, 2001. https://doi.org/10.1016/S0165-0114(00)00003-8
Chen, L.H.; Hsueh, C.C.; Chang, C.J. (2013). A two-stage approach for formulating fuzzy regression models, Knowl.-Based Syst., 52(1), 302-310, 2013. https://doi.org/10.1016/j.knosys.2013.08.010
Karaboga, D.; Basturk, B. (2007). A powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm, J. Global Optimiz., 39(3), 459-471, 2007. https://doi.org/10.1007/s10898-007-9149-x
Abu-Mouti, F.S.; El-Hawary, M.E. (2011). Optimal Distributed Generation Allocation and Sizing in Distribution Systems via Artificial Bee Colony Algorithm, IEEE Trans. Power Del., 26(4), 2090-2101, 2011. https://doi.org/10.1109/TPWRD.2011.2158246
Todorovic, N.; Petrovic, S. (2013). Bee Colony Optimization Algorithm for Nurse Rostering, IEEE Trans. Syst.,Man, Cybern.,Syst., 43(2), 467-473, 2013. https://doi.org/10.1109/TSMCA.2012.2210404
Vural, R.A.; Yildirim, T.; Kadioglu, T.; Basargan, A. (2012). Performance Evaluation of Evolutionary Algorithms for Optimal Filter Design, IEEE Trans. Evol. Comput., 16(1), 135-147, 2012. https://doi.org/10.1109/TEVC.2011.2112664
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 Guo Li
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.