Acute Knee Injury Detection with Magnetic Resonance Imaging (MRI)
DOI:
https://doi.org/10.15837/ijccc.2024.5.6648Keywords:
acute knee injury, deep learning, classification, detection acute knee injury, magnetic resonance imagingAbstract
The anterior cruciate ligament (ACL) is a major ligament in the knee that helps to stabilize the joint and prevent excessive forward movement of the shinbone. An ACL tear is a common injury, especially among athletes who participate in sports that involve pivoting and sudden changes in direction. This paper proposes an ensemble model, which includes three deep learning models (EfficientNet-B7, ResNet-152V2, and DenseNet-201) and a genetic algorithm, to detect and classify ACL tears using knee magnetic resonance imaging (MRI). The ensemble model was trained on the KneeMRI dataset, which comprises labeled MRI images. The deep learning models can learn to identify subtle changes in ligament structure and signal intensity that are associated with ACL tears and the genetic algorithm is used to find the optimal prediction. The proposed ensemble model was evaluated using the KneeMRI dataset. The dataset was preprocessed using data augmentation techniques. Then, the ensemble model was applied to the KneeMRI dataset, evaluated, and compared with previous models. The accuracy, recall, precision, specificity, and F1 score of our proposed ensemble model were 99.68%, 98.73%, 99.52%, 99.62%, and 98.94%, respectively. Thus, our ensemble model has an unrivaled perceptive outcome and could be used to accurately identify and classify ACL tears, improving patient outcome.
References
Mangone, M.; Diko, A.; Giuliani, L.; Agostini, F.; Paoloni, M.; Bernetti, A.; Santilli, G.; Conti, M.; Savina, A.; Iudicelli, G.; et al.A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging. Int. J. Environ. Res. Public Health,20(6059) (2023). https://doi.org/10.3390/ijerph20126059
Musahl, V.; Karlsson, J. Anterior cruciate ligament tear. N. Engl. J. Med., 380 (2019), 2341-2348. https://doi.org/10.1056/NEJMcp1805931
Ahmed, I.; Radhakrishnan, A.; Khatri, C.; Staniszewska, S.; Hutchinson, C.; Parsons, N.; Price, A.; Metcalfe, A. Meniscus tears are more common than previously identified, however, less than a quarter of people with a tear undergo arthroscopy. Knee Surg. Sport. Traumatol. Arthrosc, 29 (2021), 3892-3898 https://doi.org/10.1007/s00167-021-06458-2
Lohmander, L.S.; Englund, P.M.; Dahl, L.L.; Roos, E.M.The long-term consequence of anterior cruciate ligament and meniscus injuries. Am. J. Sport. Med., 35 (2007), 1756-1769. https://doi.org/10.1177/0363546507307396
Englund, M.; Roemer, F.W.; Hayashi, D.; Crema, M.D.; Guermazi, A. Meniscus pathology, osteoarthritis and the treatment controversy. Nat. Rev. Rheumatol., 8 (2012), 412-419. https://doi.org/10.1038/nrrheum.2012.69
Conaghan, P.G.; Porcheret, M.; Kingsbury, S.R.; Gammon, A.; Soni, A.; Hurley, M.; Rayman, M.P.; Barlow, J.; Hull, R.G.; Cumming, J.; et al. Impact and therapy of osteoarthritis: The Arthritis Care OA, Nation 2012 survey. Clin. Rheumatol, 34 (2015), 1581-1588. https://doi.org/10.1007/s10067-014-2692-1
Vriezekolk, J.; Peters, Y.A.S.; Steegers, M.A.H.; Davidson, E.N.B.; Ende, C.H.M.V.D. Pain descriptors and determinants of pain sensitivity in knee osteoarthritis: A community-based crosssectional study. Rheumatol. Adv. Pract., 6 (2022). https://doi.org/10.1093/rap/rkac016
Mohammed, A.S.; Hasanaath, A.A.; Latif, G.; Bashar, A. Knee Osteoarthritis Detection and Severity Classification Using Residual Neural Networks on Preprocessed X-ray Images. Diagnostics, 13 (2023), 1380. https://doi.org/10.3390/diagnostics13081380
US EPA. An Aging Nation: The Older Population in the United States|Health & Environmental Research Online (HERO). (accessed on 22 July 2022) Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/2990744
M, G.K.; Goswami, A.D. Automatic Classification of the Severity of Knee Osteoarthritis Using Enhanced Image Sharpening and CNN. Appl. Sci., 13(1658) (2023). https://doi.org/10.3390/app13031658
Mather, R.C., III; Koenig, L.; Kocher, M.S.; Dall, T.M.; Gallo, P.; Scott, D.J.; Bach Jr, B.R.; Spindler, K.P.; Group, M.K. Societal and economic impact of anterior cruciate ligament tears. J. Bone Jt. Surg. Am., 95(1751) (2013). https://doi.org/10.2106/JBJS.L.01705
Pouly, M.; Koller, T.; Gottfrois, P.; Lionetti, S. Artificial intelligence in image analysisfundamentals and new developments. Der Hautarzt Z. Fur Dermatol. Venerol. Und Verwandte Geb., 71 (2020), 660-668. https://doi.org/10.1007/s00105-020-04663-7
Siouras, A.; Moustakidis, S.; Giannakidis, A.; Chalatsis, G.; Liampas, I.; Vlychou, M.; Hantes, M.; Tasoulis, S.; Tsaopoulos, D. Knee Injury Detection Using Deep Learning on MRI Studies: A Systematic Review. Diagnostics, 12(547) (2022). https://doi.org/10.3390/diagnostics12020537
Kim, Y.W.; Mansfield, L.T. Fool me twice: Delayed diagnoses in radiology with emphasis on perpetuated errors. AJR Am. J. Roentgenol., 202 (2014), 465-470. https://doi.org/10.2214/AJR.13.11493
European Society of Radiology (ESR); Codari, M.; Melazzini, L.; Morozov, S.P.; van Kuijk, C.C.; Sconfienza, L.M.; Sardanelli, F. Impact of artificial intelligence on radiology: A EuroAIM survey among members of the European Society of Radiology. Insights Into Imaging, 10(105) (2019). https://doi.org/10.1186/s13244-019-0798-3
Avola, D.; Cannistraci, I.; Cascio, M.; Cinque, L.; Diko, A.; Fagioli, A.; Foresti, G.L.; Lanzino, R.; Mancini, M.; Mecca, A.; et al. A Novel GAN-Based Anomaly Detection and Localization Method for Aerial Video Surveillance at Low Altitude. Remote Sens., 14(4110) (2022). https://doi.org/10.3390/rs14164110
Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst., 32 (2020), 604-624. https://doi.org/10.1109/TNNLS.2020.2979670
K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), (2016), pp. 770-778. https://doi.org/10.1109/CVPR.2016.90
Bien, N.; Rajpurkar, P.; Ball, R.L.; Irvin, J.; Park, A.; Jones, E.; Bereket, M.; Patel, B.N.; Yeom, K.W.; Shpanskaya, K. Deep-learning assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med., 15 (2018). https://doi.org/10.1371/journal.pmed.1002699
Azcona, D.; McGuinness, K.; Smeaton, A.F. A Comparative Study of Existing and New Deep Learning Methods for Detecting Knee Injuries using the MRNet Dataset. In Proceedings of the 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA), Kuala Lumpur, Malaysia,, (18-20 September 2020), pp. 149-155. https://doi.org/10.1109/IDSTA50958.2020.9264030
Chang, P.D.; Wong, T.T.; Rasiej, M.J. Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear. J. Digit. Imaging, 32 (2019), 980-986. https://doi.org/10.1007/s10278-019-00193-4
Liu, F.; Guan, B.; Zhou, Z.; Samsonov, A.; Rosas, H.; Lian, K.; Sharma, R.; Kanarek, A.; Kim, J.; Guermazi, A. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol. Artif. Intell., 1(180091) (2019). https://doi.org/10.1148/ryai.2019180091
Namiri, N.K.; Flament, I.; Astuto, B.; Shah, R.; Tibrewala, R.; Caliva, F.; Link, T.M.; Pedoia, V.; Majumdar, S. Deep Learning for Hierarchical Severity Staging of Anterior Cruciate Ligament Injuries from MRI. Radiol. Artif. Intell., 2 (2020). https://doi.org/10.1148/ryai.2020190207
Zhang, L.; Li, M.; Zhou, Y.; Lu, G.; Zhou, Q. Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard. J. Magn. Reson. Imaging, 52 (2020), 1745-1752. https://doi.org/10.1002/jmri.27266
Germann, C.; Marbach, G.; Civardi, F.; Fucentese, S.F.; Fritz, J.; Sutter, R.; Pfirrmann, C.W.; Fritz, B. Deep Convolutional Neural Network-Based Diagnosis of Anterior Cruciate Ligament Tears: Performance Comparison of Homogenous Versus Heterogeneous KneeMRI CohortsWith Different Pulse Sequence Protocols and 1.5-T and 3-T Magnetic Field Strengths. Investig. Radiol., 55(499) (2020). https://doi.org/10.1097/RLI.0000000000000664
Awan, M.J.; Rahim, M.S.M.; Salim, N.; Mohammed, M.A.; Garcia-Zapirain, B.; Abdulkareem, K.H. Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach. Diagnostics, 11(105) (2021). https://doi.org/10.3390/diagnostics11010105
Jeon, Y.S.; Yoshino, K.; Hagiwara, S.; Watanabe, A.; Quek, S.T.; Yoshioka, H.; Feng, M.J.I.J.O.B.; Informatics, H. Interpretable and lightweight 3-D deep learning model for automated ACL diagnosis. IEEE J. Biomed. Health Inform., 25 (2021), 2388-2397. https://doi.org/10.1109/JBHI.2021.3081355
Astuto, B.; Flament, I.K.; Namiri, N.; Shah, R.; Bharadwaj, U.; M. Link, T.; D. Bucknor, M.; Pedoia, V.; Majumdar, S.J.R.A.I. Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies. Radiol. Artif. Intell., 3 (2021). https://doi.org/10.1148/ryai.2021200165
tajduhar, I.; Mamula, M.; Miletić, D., Unal,G.; Semi-automated detection of anterior cruciate ligament injury from MRI, Computer Methods and Programs in Biomedicine, 140 (2017), p.p. 151-164. https://doi.org/10.1016/j.cmpb.2016.12.006
Tan, M. and Quoc V. Le; Tan and Le EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. CoRR, 2019.
Bilal, M., Maqsood, M., Yasmin, S. et al. A transfer learning-based efficient spatiotemporal human action recognition framework for long and overlapping action classes. J Supercomput, 78 (2022), 2873-2908. https://doi.org/10.1007/s11227-021-03957-4
Additional Files
Published
Issue
Section
License
Copyright (c) 2024 mahmood@ mahmood, Khalaf Alsalem, Murtada Elbashir, Sameh Abd El-Ghany, A. Abd El-Aziz
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.