Acute Knee Injury Detection with Magnetic Resonance Imaging (MRI)

Authors

  • Mahmood A. Mahmood Department of Information Systems, College of Computer and Information Sciences, Jouf University, KSA
  • Khalaf Alsalem Department of Information Systems, College of Computer and Information Sciences, Jouf University, KSA
  • Murtada Elbashir Department of Information Systems, College of Computer and Information Sciences, Jouf University, KSA
  • Sameh Abd El-Ghany Department of Information Systems, College of Computer and Information Sciences Jouf University, KSA
  • A. Abd El-Aziz Department of Information Systems, College of Computer and Information Sciences, Jouf University, KSA

DOI:

https://doi.org/10.15837/ijccc.2024.5.6648

Keywords:

acute knee injury, deep learning, classification, detection acute knee injury, magnetic resonance imaging

Abstract

The anterior cruciate ligament (ACL) is a major ligament in the knee that helps to stabilize the joint and prevent excessive forward movement of the shinbone. An ACL tear is a common injury, especially among athletes who participate in sports that involve pivoting and sudden changes in direction. This paper proposes an ensemble model, which includes three deep learning models (EfficientNet-B7, ResNet-152V2, and DenseNet-201) and a genetic algorithm, to detect and classify ACL tears using knee magnetic resonance imaging (MRI). The ensemble model was trained on the KneeMRI dataset, which comprises labeled MRI images. The deep learning models can learn to identify subtle changes in ligament structure and signal intensity that are associated with ACL tears and the genetic algorithm is used to find the optimal prediction. The proposed ensemble model was evaluated using the KneeMRI dataset. The dataset was preprocessed using data augmentation techniques. Then, the ensemble model was applied to the KneeMRI dataset, evaluated, and compared with previous models. The accuracy, recall, precision, specificity, and F1 score of our proposed ensemble model were 99.68%, 98.73%, 99.52%, 99.62%, and 98.94%, respectively. Thus, our ensemble model has an unrivaled perceptive outcome and could be used to accurately identify and classify ACL tears, improving patient outcome.

References

Mangone, M.; Diko, A.; Giuliani, L.; Agostini, F.; Paoloni, M.; Bernetti, A.; Santilli, G.; Conti, M.; Savina, A.; Iudicelli, G.; et al.A Machine Learning Approach for Knee Injury Detection from Magnetic Resonance Imaging. Int. J. Environ. Res. Public Health,20(6059) (2023). https://doi.org/10.3390/ijerph20126059

Musahl, V.; Karlsson, J. Anterior cruciate ligament tear. N. Engl. J. Med., 380 (2019), 2341-2348. https://doi.org/10.1056/NEJMcp1805931

Ahmed, I.; Radhakrishnan, A.; Khatri, C.; Staniszewska, S.; Hutchinson, C.; Parsons, N.; Price, A.; Metcalfe, A. Meniscus tears are more common than previously identified, however, less than a quarter of people with a tear undergo arthroscopy. Knee Surg. Sport. Traumatol. Arthrosc, 29 (2021), 3892-3898 https://doi.org/10.1007/s00167-021-06458-2

Lohmander, L.S.; Englund, P.M.; Dahl, L.L.; Roos, E.M.The long-term consequence of anterior cruciate ligament and meniscus injuries. Am. J. Sport. Med., 35 (2007), 1756-1769. https://doi.org/10.1177/0363546507307396

Englund, M.; Roemer, F.W.; Hayashi, D.; Crema, M.D.; Guermazi, A. Meniscus pathology, osteoarthritis and the treatment controversy. Nat. Rev. Rheumatol., 8 (2012), 412-419. https://doi.org/10.1038/nrrheum.2012.69

Conaghan, P.G.; Porcheret, M.; Kingsbury, S.R.; Gammon, A.; Soni, A.; Hurley, M.; Rayman, M.P.; Barlow, J.; Hull, R.G.; Cumming, J.; et al. Impact and therapy of osteoarthritis: The Arthritis Care OA, Nation 2012 survey. Clin. Rheumatol, 34 (2015), 1581-1588. https://doi.org/10.1007/s10067-014-2692-1

Vriezekolk, J.; Peters, Y.A.S.; Steegers, M.A.H.; Davidson, E.N.B.; Ende, C.H.M.V.D. Pain descriptors and determinants of pain sensitivity in knee osteoarthritis: A community-based crosssectional study. Rheumatol. Adv. Pract., 6 (2022). https://doi.org/10.1093/rap/rkac016

Mohammed, A.S.; Hasanaath, A.A.; Latif, G.; Bashar, A. Knee Osteoarthritis Detection and Severity Classification Using Residual Neural Networks on Preprocessed X-ray Images. Diagnostics, 13 (2023), 1380. https://doi.org/10.3390/diagnostics13081380

US EPA. An Aging Nation: The Older Population in the United States|Health & Environmental Research Online (HERO). (accessed on 22 July 2022) Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/2990744

M, G.K.; Goswami, A.D. Automatic Classification of the Severity of Knee Osteoarthritis Using Enhanced Image Sharpening and CNN. Appl. Sci., 13(1658) (2023). https://doi.org/10.3390/app13031658

Mather, R.C., III; Koenig, L.; Kocher, M.S.; Dall, T.M.; Gallo, P.; Scott, D.J.; Bach Jr, B.R.; Spindler, K.P.; Group, M.K. Societal and economic impact of anterior cruciate ligament tears. J. Bone Jt. Surg. Am., 95(1751) (2013). https://doi.org/10.2106/JBJS.L.01705

Pouly, M.; Koller, T.; Gottfrois, P.; Lionetti, S. Artificial intelligence in image analysisfundamentals and new developments. Der Hautarzt Z. Fur Dermatol. Venerol. Und Verwandte Geb., 71 (2020), 660-668. https://doi.org/10.1007/s00105-020-04663-7

Siouras, A.; Moustakidis, S.; Giannakidis, A.; Chalatsis, G.; Liampas, I.; Vlychou, M.; Hantes, M.; Tasoulis, S.; Tsaopoulos, D. Knee Injury Detection Using Deep Learning on MRI Studies: A Systematic Review. Diagnostics, 12(547) (2022). https://doi.org/10.3390/diagnostics12020537

Kim, Y.W.; Mansfield, L.T. Fool me twice: Delayed diagnoses in radiology with emphasis on perpetuated errors. AJR Am. J. Roentgenol., 202 (2014), 465-470. https://doi.org/10.2214/AJR.13.11493

European Society of Radiology (ESR); Codari, M.; Melazzini, L.; Morozov, S.P.; van Kuijk, C.C.; Sconfienza, L.M.; Sardanelli, F. Impact of artificial intelligence on radiology: A EuroAIM survey among members of the European Society of Radiology. Insights Into Imaging, 10(105) (2019). https://doi.org/10.1186/s13244-019-0798-3

Avola, D.; Cannistraci, I.; Cascio, M.; Cinque, L.; Diko, A.; Fagioli, A.; Foresti, G.L.; Lanzino, R.; Mancini, M.; Mecca, A.; et al. A Novel GAN-Based Anomaly Detection and Localization Method for Aerial Video Surveillance at Low Altitude. Remote Sens., 14(4110) (2022). https://doi.org/10.3390/rs14164110

Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural Netw. Learn. Syst., 32 (2020), 604-624. https://doi.org/10.1109/TNNLS.2020.2979670

K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), (2016), pp. 770-778. https://doi.org/10.1109/CVPR.2016.90

Bien, N.; Rajpurkar, P.; Ball, R.L.; Irvin, J.; Park, A.; Jones, E.; Bereket, M.; Patel, B.N.; Yeom, K.W.; Shpanskaya, K. Deep-learning assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet. PLoS Med., 15 (2018). https://doi.org/10.1371/journal.pmed.1002699

Azcona, D.; McGuinness, K.; Smeaton, A.F. A Comparative Study of Existing and New Deep Learning Methods for Detecting Knee Injuries using the MRNet Dataset. In Proceedings of the 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA), Kuala Lumpur, Malaysia,, (18-20 September 2020), pp. 149-155. https://doi.org/10.1109/IDSTA50958.2020.9264030

Chang, P.D.; Wong, T.T.; Rasiej, M.J. Deep Learning for Detection of Complete Anterior Cruciate Ligament Tear. J. Digit. Imaging, 32 (2019), 980-986. https://doi.org/10.1007/s10278-019-00193-4

Liu, F.; Guan, B.; Zhou, Z.; Samsonov, A.; Rosas, H.; Lian, K.; Sharma, R.; Kanarek, A.; Kim, J.; Guermazi, A. Fully automated diagnosis of anterior cruciate ligament tears on knee MR images by using deep learning. Radiol. Artif. Intell., 1(180091) (2019). https://doi.org/10.1148/ryai.2019180091

Namiri, N.K.; Flament, I.; Astuto, B.; Shah, R.; Tibrewala, R.; Caliva, F.; Link, T.M.; Pedoia, V.; Majumdar, S. Deep Learning for Hierarchical Severity Staging of Anterior Cruciate Ligament Injuries from MRI. Radiol. Artif. Intell., 2 (2020). https://doi.org/10.1148/ryai.2020190207

Zhang, L.; Li, M.; Zhou, Y.; Lu, G.; Zhou, Q. Deep Learning Approach for Anterior Cruciate Ligament Lesion Detection: Evaluation of Diagnostic Performance Using Arthroscopy as the Reference Standard. J. Magn. Reson. Imaging, 52 (2020), 1745-1752. https://doi.org/10.1002/jmri.27266

Germann, C.; Marbach, G.; Civardi, F.; Fucentese, S.F.; Fritz, J.; Sutter, R.; Pfirrmann, C.W.; Fritz, B. Deep Convolutional Neural Network-Based Diagnosis of Anterior Cruciate Ligament Tears: Performance Comparison of Homogenous Versus Heterogeneous KneeMRI CohortsWith Different Pulse Sequence Protocols and 1.5-T and 3-T Magnetic Field Strengths. Investig. Radiol., 55(499) (2020). https://doi.org/10.1097/RLI.0000000000000664

Awan, M.J.; Rahim, M.S.M.; Salim, N.; Mohammed, M.A.; Garcia-Zapirain, B.; Abdulkareem, K.H. Efficient detection of knee anterior cruciate ligament from magnetic resonance imaging using deep learning approach. Diagnostics, 11(105) (2021). https://doi.org/10.3390/diagnostics11010105

Jeon, Y.S.; Yoshino, K.; Hagiwara, S.; Watanabe, A.; Quek, S.T.; Yoshioka, H.; Feng, M.J.I.J.O.B.; Informatics, H. Interpretable and lightweight 3-D deep learning model for automated ACL diagnosis. IEEE J. Biomed. Health Inform., 25 (2021), 2388-2397. https://doi.org/10.1109/JBHI.2021.3081355

Astuto, B.; Flament, I.K.; Namiri, N.; Shah, R.; Bharadwaj, U.; M. Link, T.; D. Bucknor, M.; Pedoia, V.; Majumdar, S.J.R.A.I. Automatic Deep Learning-assisted Detection and Grading of Abnormalities in Knee MRI Studies. Radiol. Artif. Intell., 3 (2021). https://doi.org/10.1148/ryai.2021200165

tajduhar, I.; Mamula, M.; Miletić, D., Unal,G.; Semi-automated detection of anterior cruciate ligament injury from MRI, Computer Methods and Programs in Biomedicine, 140 (2017), p.p. 151-164. https://doi.org/10.1016/j.cmpb.2016.12.006

Tan, M. and Quoc V. Le; Tan and Le EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. CoRR, 2019.

Bilal, M., Maqsood, M., Yasmin, S. et al. A transfer learning-based efficient spatiotemporal human action recognition framework for long and overlapping action classes. J Supercomput, 78 (2022), 2873-2908. https://doi.org/10.1007/s11227-021-03957-4

Additional Files

Published

2024-09-02

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.