A Topic Recommendation Control Method Based on Topic Relevancy and R-tree Index

Authors

  • Jing Yu School of Management, Jiujiang University, China
  • Zhixing Lu Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Malaysia
  • Xianghua Li School of Humanities, Anqing Normal University, China
  • Bin Wu School of Computer and Big Data Science, Jiujiang University, China
  • Shunli Zhang School of Computer and Big Data Science, Jiujiang University, China
  • Zongmin Cui School of Computer and Big Data Science, Jiujiang University, China

DOI:

https://doi.org/10.15837/ijccc.2024.5.6658

Keywords:

topic recommendation, recommendation control, topic relevancy, R-tree index, regional communication

Abstract

Topic recommendation control aims to suggest relevant topics to users based on their preferences and regional trends. However, existing methods often lack effective measures to evaluate topic-user relevancy and require comparing large amounts of regional information, leading to low accuracy and efficiency. Therefore, we propose a Topic Recommendation Control method based on topic Relevancy and R-tree index (named as TRCRR) to address these limitations. TRCRR introduces a novel personalized topic relevancy metric that quantifies the relevancy between topics and user preferences. To improve efficiency, an R-tree topic index is constructed to organize topics across different regions hierarchically. Experiments on a real-world dataset show that TRCRR achieves better recommendation accuracy and efficiency compared to several baseline methods. The proposed approach offers a promising solution for personalized and region-aware topic recommendation.

References

Luo, S.; Ivison, H.; Han, S. C.; Poon, J. (2024). Local Interpretations for Explainable Natural Language Processing: A Survey, ACM Computing Surveys, 56(9), 1-36. https://doi.org/10.1145/3649450

Kim, J.I.; Ju, S.W. (2022). Location Information Analysis of Large Coffee Shops in Big City: A Customer Satisfaction and Behavioral Intention Based Study, Journal of System and Management Sciences, 12(1), 63-84.

Rathore, M. A.; Kim, J. (2021). Spatio-temporal Summarized Visualization of SmartX Multi- View Visibility in Cloud-native Edge Boxes, Computer Science and Information Systems, 18(1), 169-188. https://doi.org/10.2298/CSIS200317034R

Christalin Nelson, S.; Tapan Kumar, M.; Prakash G.L. (2022). A Novel Optimized LSTM Networks for Traffic Prediction in VANET, Journal of System and Management Sciences, 12(1), 461-479.

Ruchita. (2021). Smart Transportation: Modeling Barriers of Electric Vehicles Charging Infrastructure, Journal of System and Management Sciences, 11(4), 190-217.

Cˇerkauskiene˙, A.; Meidute-Kavaliauskiene, I. (2023). The Aspects of Supply Chain Risk Management in the Healthcare Industry, Journal of Logistics, Informatics and Service Science, 10(1), 1-19.

Buschiazzo M.; Mula J.; Campuzano-Bolarin F. (2020). Simulation Optimization for the Inventory Management of Healthcare Supplies, International Journal of Simulation Modelling, 19(2), 255- 266. https://doi.org/10.2507/IJSIMM19-2-514

Peng, H.; Kong, F.; Zhang, Q. (2024). Micro Multiobjective Evolutionary Algorithm With Piecewise Strategy for Embedded-Processor-Based Industrial Optimization, IEEE Transactions on Cybernetics, 1-12. DOI: 10.1109/TCYB.2023.3336369 https://doi.org/10.1109/TCYB.2023.3336369

Shamshiri, A.; Ryu, K. R.; Park, J. Y. (2024). Text mining and natural language processing in construction, Automation in Construction, 158, 105200. https://doi.org/10.1016/j.autcon.2023.105200

Anbazhagu, U. V.; Niveditha, V. R.; Bhat, C. R.; Mahesh, T. R.; Swapna, B. (2024). High- Performance Technique for Item Recommendation in Social Networks using Multiview Clustering, International Journal of Computers Communications & Control, 19(1), 5818: 1-18. https://doi.org/10.15837/ijccc.2024.1.5818

Stephe, S.; Jayasankar, T.; Kumar, K.V. (2022). Motor Imagery EEG Recognition using Deep Generative Adversarial Network with EMD for BCI Applications, Tehniˇcki Vjesnik, 29(1), 92-100. https://doi.org/10.17559/TV-20210121112228

Alshammari, M.; Alshammari, A. (2023). Friend Recommendation Engine for Facebook Users via Collaborative Filtering, International Journal of Computers Communications & Control, 18(2), 4998: 1-10. https://doi.org/10.15837/ijccc.2023.2.4998

Ma, Y.; Jabar, J. (2023). Online Recommendation Method of Malaysian Medical Tourism Products Based on Collaborative Filtering Algorithm, Journal of Logistics, Informatics and Service Science, 10(2), 79-90.

Sprenger, B.; De Pasquale, G.; Soloperto, R.; Lygeros, J.; D¨ofler, F. (2024). Control Strategies for Recommendation Systems in Social Networks, arxiv preprint arxiv, https://doi.org/10.48550/arXiv.2403.06152. https://doi.org/10.1109/LCSYS.2024.3400701

Yousfi, H.; Mesmoudi, A.; Hadjali, A.; Matallah, H.; Benkabou, S. E. (2023). SRDF_QDAG: An Efficient End-to-End RDF Data Management When Graph Exploration Meets Spatial Processing, Computer Science and Information Systems, 20(4), 1311-1341. https://doi.org/10.2298/CSIS230225046Y

Guo, S.; Liao, X.; Meng, F.; Zhao, Q.; Tang, Y.; Li, H.; Zong, Q. (2024). FSASA: Sequential Recommendation Based on Fusing Session-Aware Models and Self-Attention Networks, Computer Science and Information Systems, 21(1), 1-20. https://doi.org/10.2298/CSIS230522067G

Zhang, X.; Ge, H. E.; Liu, Z.; Liu, Y. Q. (2024). Analysis of Flow Straightener on the Internal Flow Field of Three-Phase Jet Fire Monitors, International Journal of Simulation Modelling, 23(1), 101-112. https://doi.org/10.2507/IJSIMM23-1-676

Kim, K.K.; Park, H.J.; Kim, J.H. (2022). Identification of Herzberg's Motivators and Hygiene Factors for Mobile Shopping Service System Based on Topic Modeling of User Reviews, Journal of Logistics, Informatics and Service Science, 9(1), 156-176.

Chen, L.; Li, Y.; Xu, J.; Jensen, C. S. (2018). Towards Why-Not Spatial Keyword Top-k Queries: a Direction-Aware Approach, IEEE Transactions on Knowledge and Data Engineering, 30(4), 796-809. https://doi.org/10.1109/TKDE.2017.2778731

Yin, H.; Wang, W.; Wang, H.; Chen, L.; Zhou, X. (2017). Spatial-Aware Hierarchical Collaborative Deep Learning for POI Recommendation, IEEE Transactions on Knowledge and Data Engineering, 29(11), 2537-2551. https://doi.org/10.1109/TKDE.2017.2741484

Zhou, X.; Mascolo, C.; Zhao, Z. (2019). Topic-enhanced memory networks for personalised pointof- interest recommendation, In Proceedings of the 25th ACM SIGKDD International conference on knowledge discovery & data mining, 3018-3028. https://doi.org/10.1145/3292500.3330781

Li, R.; Lv, S.; Zhu, H.; Song, X. (2020). Spatial-Temporal Topic Model for Cold-Start Event Recommendation, IEEE Access, 8, 214050-214060. https://doi.org/10.1109/ACCESS.2020.3040778

Chen, X.; Liu, Y.; Li, F.; Li, X.; Jia, X. (2021). Remote Sensing Image Recommendation Based on Spatial-Temporal Embedding Topic Model, Computers & Geosciences, 157, 104935. https://doi.org/10.1016/j.cageo.2021.104935

Liu, K.; Tong, P.; Li, M.; Wu, Y.; Huang, J. (2023). ST4ML: Machine Learning Oriented Spatio- Temporal Data Processing at Scale, Proceedings of the ACM on Management of Data, 1(1), 1-28. https://doi.org/10.1145/3588941

Zhao, X.; Zhang, Z.; Bi, X.; Sun, Y. (2023). A New Point-of-Interest Group Recommendation Method in Location-Based Social Networks, Neural Computing and Applications, 35, 12945-129561. https://doi.org/10.1007/s00521-020-04979-4

Chang, W.; Sun, D.; Du, Q. (2023). Intelligent Sensors for POI Recommendation Model Using Deep Learning in Location-Based Social Network Big Data, Sensors, 23(2), 850. https://doi.org/10.3390/s23020850

Canturk, D.; Karagoz, P.; Kim, S. W.; Toroslu, I. H. (2023). Trust-Aware Location Recommendation in Location-Based Social Networks: a Graph-Based Approach, Expert Systems with Applications, 213, 119048. https://doi.org/10.1016/j.eswa.2022.119048

Gao, Q.; Wang, W.; Huang, L.; Yang, X.; Li, T.; Fujita, H. (2023). Dual-Grained Human Mobility Learning for Location-Aware Trip Recommendation with Spatial-Temporal Graph Knowledge Fusion, Information Fusion, 92, 46-63. https://doi.org/10.1016/j.inffus.2022.11.018

Lv, P.; Zhang, Q.; Shi, L.; Guan, Z.; Fan, Y.; Li, J.; Deveci, M. (2024). Exploring on Role of Location in Intelligent News Recommendation from Data Analysis Perspective, Information Sciences, 662, 120213. https://doi.org/10.1016/j.ins.2024.120213

Wardhani, D.; Astuti, R.; Saputra, D. D. (2024). Optimasi Feature Selection Text Mining: Stemming Dan Stopword Untuk Sentimen Analisis Aplikasi SatuSehat, Innovative: Journal Of Social Science Research, 4(1), 7537-7548.

Cai, B.; Shao, Z.; Fang, S.; Huang, X.; Tang, Y.; Zheng, M.; Zhang, H. (2024). The Evolution of Urban Agglomerations in China and How It Deviates from Zipf's Law, Geo-Spatial Information Science, 27(1), 38-48. https://doi.org/10.1080/10095020.2022.2083527

Chen, Y.; Wang, J.; Li, P.; Guo, P. (2019). Single Document Keyword Extraction via Quantifying Higher-Order Structural Features of Word Co-Occurrence Graph, Computer Speech & Language, 57, 98-107. https://doi.org/10.1016/j.csl.2019.01.007

Farazi, S.; Rafiei, D. (2019). Top-k Frequent Term Queries on Streaming Data, In 2019 IEEE 35th International Conference on Data Engineering, 1582-1585. https://doi.org/10.1109/ICDE.2019.00147

Hasan, M. R.; Ferdous, J. (2024). Dominance of AI and Machine Learning Techniques in Hybrid Movie Recommendation System Applying Text-to-number Conversion and Cosine Similarity Approaches, Journal of Computer Science and Technology Studies, 6(1), 94-102. https://doi.org/10.32996/jcsts.2024.6.1.10

Roy, S.; Singh, J.; Ray, S. S. (2024). Weighted Combination of Łukasiewicz Implication and Fuzzy Jaccard Similarity in Hybrid Ensemble Framework (WCLFJHEF) for Gene Selection, Computers in Biology and Medicine, 170, 107981. https://doi.org/10.1016/j.compbiomed.2024.107981

Nicolae, C. D.; Yadav, R. K.; Tufiş, D. (2023). Evaluation of language models on Romanian XQuAD and RoITD datasets, International Journal of Computers Communications & Control, 18(1), 5111, 1-15. https://doi.org/10.15837/ijccc.2023.1.5111

Additional Files

Published

2024-09-02

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.