Evaluating Dimensionality Reduction Methods for the Detection of Industrial IoT Attacks in Edge Computing

Authors

  • Minh T. Hoang Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
  • Nhan V. Nguyen Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
  • Thu A. Pham Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
  • Tra T. Nguyen Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
  • Tuan M. Dang CMC University, Hanoi, Vietnam
  • Hoang N. Nguyen University of Engineering and Technology, Vietnam National University Hanoi

DOI:

https://doi.org/10.15837/ijccc.2024.5.6767

Keywords:

Industrial IoT, attacks, intrusion detection systems, dimensionality reduction, deep neuron networks

Abstract

Edge computing is essential for 6G mobile networks for improving reliability, reducing data rates and latency, and enhancing mobile connectivity. Edge computing is also meant to meet the increasing demands of the Internet of Things (IoT)/ Internet of Everything (IoE). In these approaches, IIoT systems necessitate precision, reliability, and scalability, while vulnerabilities in IIoT systems may lead to financial losses and safety hazards. To tackle this, Edge AI/ML-based IDSs provide adaptability and robustness for IIoT security challenges. These solutions improve security levels, threat detection rates, and response times. However, main issues such as limited resources and the accuracy of attack detection rate are challenged nowadays. In this paper, we present contributions in proposing an intrusion detection system (IDS) for edge devices deploying a lightweight deep neural network to detect IIoT attacks. We present performance analysis of the typical dimensionality reduction methods and balancing data features of the Edge-IIoT dataset to get higher performance metrics than other state-of-the-art studies.

References

Abdelmoniem, A.M.: Leveraging the edge-to-cloud continuum for scalable machine learning on decentralized data. arXiv preprint arXiv:2306.10848 (2023)

Abdulhammed, R., Musafer, H., Alessa, A., Faezipour, M., Abuzneid, A.: Features dimensionality reduction approaches for machine learning based network intrusion detection. Electronics 8(3), 322 (2019) https://doi.org/10.3390/electronics8030322

Alhowaide, A., Alsmadi, I., Tang, J.: Pca, random-forest and pearson correlation for dimensionality reduction in iot ids. In: 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS). pp. 1-6. IEEE (2020) https://doi.org/10.1109/IEMTRONICS51293.2020.9216388

Ali, I., Wassif, K., Bayomi, H.: Dimensionality reduction for images of iot using machine learning. Scientific Reports 14(1), 7205 (2024) https://doi.org/10.1038/s41598-024-57385-4

Alshahrani, H., Khan, A., Rizwan, M., Reshan, M.S.A., Sulaiman, A., Shaikh, A.: Intrusion detection framework for industrial internet of things using software defined network. Sustainability 15(11), 9001 (2023) https://doi.org/10.3390/su15119001

Alzahrani, A., Aldhyani, T.H.: Design of efficient based artificial intelligence approaches for sustainable of cyber security in smart industrial control system. Sustainability 15(10), 8076 (2023) https://doi.org/10.3390/su15108076

Bibi, I., Akhunzada, A., Kumar, N.: Deep ai-powered cyber threat analysis in iiot. IEEE Internet of Things Journal (2022) https://doi.org/10.1109/JIOT.2022.3229722

Chen, M.F., et al.: Train and you'll miss it: Interactive model iteration with weak supervision and pretrained embeddings. ArXiv abs/2006.15168 (2020)

Dai, M., Xu, S., Wang, Z., Ma, H., Qiu, X.: Edge trusted sharing: task-driven decentralized resources collaborate in iot. IEEE Internet of Things Journal 10(14), 12077-12089 (2021) https://doi.org/10.1109/JIOT.2021.3123333

Dakshinamurthy, S., Gera, B.M., Kayarvizhy, N.: Analytical performance of traditional feature selection methods on high dimensionality data. In: 2023 IEEE 8th International Conference for Convergence in Technology (I2CT). pp. 1-8. IEEE (2023)

Ferrag, M.A., Friha, O., Hamouda, D., Maglaras, L., Janicke, H.: Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications for centralized and federated learning. IEEE Access 10, 40281-40306 (2022) https://doi.org/10.1109/ACCESS.2022.3165809

Gorbett, M., Shirazi, H., Ray, I.: Local intrinsic dimensionality of iot networks for unsupervised intrusion detection. In: IFIP Annual Conference on Data and Applications Security and Privacy. pp. 143-161. Springer International Publishing (2022) https://doi.org/10.1007/978-3-031-10684-2_9

Hoang, T.M., Pham, T.A., Do, V.V., Nguyen, V.N., Nguyen, M.H.: A lightweight dnn-based ids for detecting iot cyberattacks in edge computing. In: 2022 International Conference on Advanced Technologies for Communications (ATC). pp. 136-140. IEEE (2022) https://doi.org/10.1109/ATC55345.2022.9943049

Huang, H., Ye, Q., Zhou, Y.: 6g-empowered offloading for realtime applications in multi-access edge computing. IEEE Transactions on Network Science and Engineering 10(3), 1311-1325 (2022) https://doi.org/10.1109/TNSE.2022.3188921

Jia, W., Sun, M., Lian, J., Hou, S.: Feature dimensionality reduction: a review. Complex & Intelligent Systems 8(3), 2663-2693 (2022) https://doi.org/10.1007/s40747-021-00637-x

Kabir, M.F., Chen, T., Ludwig, S.A.: A performance analysis of dimensionality reduction algorithms in machine learning models for cancer prediction. Healthcare Analytics 3, 100125 (2023) https://doi.org/10.1016/j.health.2022.100125

Kayode-Ajala, O.: Anomaly detection in network intrusion detection systems using machine learning and dimensionality reduction. Sage Science Review of Applied Machine Learning 4(1), 12-26 (2021)

Khodr, J., et al.: Dimensionality reduction on hyperspectral images: A comparative review based on artificial datas. In: 2011 4th International Congress on Image and Signal Processing. vol. 4, pp. 1875-1883 (2011) https://doi.org/10.1109/CISP.2011.6100531

Last, F., Douzas, G., Bacao, F.: Oversampling for imbalanced learning based on k-means and smote. arXiv preprint arXiv:1711.00837 2 (2017)

Loseto, G., Scioscia, F., Ruta, M., Gramegna, F., Ieva, S., Fasciano, C., Bilenchi, I., Loconte, D., Di Sciascio, E.: A cloud-edge artificial intelligence framework for sensor networks. In: 2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI). pp. 149-154. IEEE (2023) https://doi.org/10.1109/IWASI58316.2023.10164335

Lv, P., Xu, W., Nie, J., Yuan, Y., Cai, C., Chen, Z., Xu, J.: Edge computing task offloading for environmental perception of autonomous vehicles in 6g networks. IEEE Transactions on Network Science and Engineering 10(3), 1228-1245 (2022) https://doi.org/10.1109/TNSE.2022.3211193

MENDİ, A.F.: Edge ai technology in the defense industry via reinforcement learning in simulation environments. Gümüşhane Üniversitesi Fen Bilimleri Dergisi 13(3), 718-732 (2023) https://doi.org/10.17714/gumusfenbil.1266035

Mohy-Eddine, M., Guezzaz, A., Benkirane, S., Azrour, M., Farhaoui, Y.: An ensemble learning based intrusion detection model for industrial iot security. Big Data Mining and Analytics 6(3), 273-287 (2023) https://doi.org/10.26599/BDMA.2022.9020032

Nanga, S., et al.: Review of dimension reduction methods. Journal of Data Analysis and Information Processing (2021) https://doi.org/10.4236/jdaip.2021.93013

Rullo, A., Bertino, E., Ren, K.: Guest editorial special issue on intrusion detection for the internet of things. IEEE Internet of Things Journal 10(10), 8327-8330 (2023) https://doi.org/10.1109/JIOT.2023.3244636

Salam, M.A., Azar, A.T., Elgendy, M.S., Fouad, K.M.: The effect of different dimensionality reduction techniques on machine learning overfitting problem. Int. J. Adv. Comput. Sci. Appl 12(4), 641-655 (2021) https://doi.org/10.14569/IJACSA.2021.0120480

Uriot, T., et al.: On genetic programming representations and fitness functions for interpretable dimensionality reduction. In: Proceedings of the Genetic and Evolutionary Computation Conference (2022) https://doi.org/10.1145/3512290.3528849

Velliangiri, S., et al.: A review of dimensionality reduction techniques for efficient computation. Procedia Computer Science (2019) https://doi.org/10.1016/j.procs.2020.01.079

Wang, Q., Li, L., Jiang, B., Lu, Z., Liu, J., Jian, S.: Malicious domain detection based on k-means and smote. In: Computational Science-ICCS 2020: 20th International Conference, Amsterdam, The Netherlands, June 3-5, 2020, Proceedings, Part II. vol. 20, pp. 468-481. Springer International Publishing (2020) https://doi.org/10.1007/978-3-030-50417-5_35

Wu, Q., Zhu, Y., Shi, W.,Wang, T., Huang, Y., Jiang, D., Liu, X.: A new data dimension reduction method based on convolution in the application of authenticity identification of traditional chinese medicine longgu. In: Journal of Physics: Conference Series. vol. 2504,1, p. 012035. IOP Publishing (2023) https://doi.org/10.1088/1742-6596/2504/1/012035

Xu, D., Li, T., Li, Y., Su, X., Tarkoma, S., Jiang, T., Crowcroft, J., Hui, P.: Edge intelligence: Architectures, challenges, and applications. arXiv preprint arXiv:2003.12172 (2020)

Yaicharoen, A., Hashikura, K., Kamal, M.A.S., Murakami, I., Yamada, K.: Effects of dimensionality reduction on classifier training time and quality. In: 2023 Third International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP). pp. 53-56. IEEE (2023) https://doi.org/10.1109/ICA-SYMP56348.2023.10044946

Zhang, Q., Han, R., Xin, G., Liu, C.H., Wang, G., Chen, L.Y.: Lightweight and accurate dnn-based anomaly detection at edge. IEEE Transactions on Parallel and Distributed Systems 33(11), 2927-2942 (2021) https://doi.org/10.1109/TPDS.2014.2363668

Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., Karagiannidis, G.K., Fan, P.: 6g wireless networks: Vision, requirements, architecture, and key technologies. IEEE vehicular technology magazine 14(3), 28-41 (2019) https://doi.org/10.1109/MVT.2019.2921208

Additional Files

Published

2024-09-02

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.