Spatiotemporal Sequence Prediction Based on Spatiotemporal Self-Attention Mechanism

Authors

  • Yuan Zhao Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Australia
  • Junlin Lu Peking University, China

DOI:

https://doi.org/10.15837/ijccc.2024.6.6771

Keywords:

Spatiotemporal prediction; Self-attention mechanisms; Graph Convolutional Networks; Transformer architectures

Abstract

This paper introduces the GCN-Transformer model, an innovative approach that combines Graph Convolutional Networks (GCNs) and Transformer architectures to enhance spatiotemporal sequence prediction. Targeted at applications requiring precise analysis of complex spatial and temporal data, the model was tested on two distinct datasets: PeMSD8 for traffic flow and KnowAir for air quality monitoring. The GCN-Transformer demonstrated superior performance over traditional models such as LSTMs, standalone GCNs, and other GCN-hybrid models, evidenced by its lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). An ablation study confirmed the importance of each component within the model, showing that removing elements like GCN layers, Transformer layers, attention mechanisms, or positional encoding detrimentally impacts performance. Overall, the GCN-Transformer model offers significant theoretical and practical contributions to the field of spatiotemporal data analysis, with potential applications across traffic management, environmental monitoring, and beyond.

References

Tu, Q., Geng, G. & Zhang, Q. (2023). Multi-Step Subway Passenger Flow Prediction under Large Events Using Website Data, Tehnički vjesnik, 30 (5), 1585-1593. https://doi.org/10.17559/TV-20230227000384

Chang, D., Wang*, Y. & Fan, R. (2022). Forecast of Large Earthquake Emergency Supplies Demand Based on PSO-BP Neural Network, Tehnički vjesnik, 29 (2), 561-571. https://doi.org/10.17559/TV-20211120092137

Christalin Nelson, S., Tapan Kumar, M., & Prakash G.L. (2022). A Novel Optimized LSTM Networks for Traffic Prediction in VANET, Journal of System and Management Sciences, 12(1), 461-479.

Wu, Z., Huang, M., Xing, Z., & Yang, T. (2024). Improving Short-Term Traffic Flow Prediction using Grey Relational Analysis for Data Filtering and Stacked LSTM Modeling, INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 19(1). https://doi.org/10.15837/ijccc.2024.1.6149

Zheng, C., Fan, X., Pan, S., Jin, H., Peng, Z., Wu, Z., Wang, C., & Yu, P. S. (2023). Spatiotemporal joint graph convolutional networks for traffic forecasting, IEEE Transactions on Knowledge and Data Engineering, 1-14. https://doi.org/10.1109/TKDE.2023.3284156

Wang, S., Li, Y., Zhang, J., Meng, Q., Meng, L., & Gao, F. (2020). PM2.5-GNN, Proceedings of the 28th International Conference on Advances in Geographic Information Systems. https://doi.org/10.1145/3397536.3422208

Geng, X., Li, Y., Wang, L., Zhang, L., Yang, Q., Ye, J.,& Liu, Y. (2019). Spatiotemporal multigraph convolution network for ride-hailing demand forecasting, Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 3656-3663. https://doi.org/10.1609/aaai.v33i01.33013656

Wang, S., Cao, J., & Yu, P. S. (2022). Deep learning for spatio-temporal data mining: A survey, IEEE Transactions on Knowledge and Data Engineering, 34(8), 3681-3700. https://doi.org/10.1109/TKDE.2020.3025580

Nohekhan, A., Zahedian, S., & Haghani, A. (2021). A deep learning model for off-ramp hourly traffic volume estimation, Transportation Research Record: Journal of the Transportation Research Board, 2675(7), 350-362. https://doi.org/10.1177/03611981211027151

Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting, Proceedings of the AAAI Conference on Artificial Intelligence, 33(01), 922-929. https://doi.org/10.1609/aaai.v33i01.3301922

Hoque, J. M., Erhardt, G. D., Schmitt, D., Chen, M., Chaudhary, A., Wachs, M., & Souleyrette, R. R. (2021). The changing accuracy of traffic forecasts, Transportation, 49(2), 445-466. https://doi.org/10.1007/s11116-021-10182-8

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & Prabhat. (2019). Deep learning and process understanding for data-driven Earth System Science, Nature, 566(7743), 195-204. https://doi.org/10.1038/s41586-019-0912-1

Yu, B., Yin, H., & Zhu, Z. (2018). Spatio-temporal graph convolutional networks: A Deep Learning Framework for traffic forecasting, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, . https://doi.org/10.24963/ijcai.2018/505

Fu, X., & Zhang, L. (2021). Spatio-temporal feature fusion for real-time prediction of TBM operating parameters: A deep learning approach, Automation in Construction, 132, 103937. https://doi.org/10.1016/j.autcon.2021.103937

Xu, G., Lin, K., Li, X., & Ye, Y. (2022). SAF-Net: A spatio-temporal deep learning method for typhoon intensity prediction, Pattern Recognition Letters, 155, 121-127. https://doi.org/10.1016/j.patrec.2021.11.012

Bhardwaj, N., Pal, A., Bhumika, & Das, D. (2024). Adaptive Context based Road Accident Risk Prediction using Spatio-temporal Deep Learning, IEEE Transactions on Artificial Intelligence 1-12. https://doi.org/10.1109/TAI.2023.3328578

Zhao, S., Zhao, K., Xia, Y., & Jia, W. (2022). Hyper-clustering enhanced spatio-temporal deep learning for traffic and demand prediction in bike-sharing systems, Information Sciences, 612, 626-637. https://doi.org/10.1016/j.ins.2022.07.054

Modi, S., Bhattacharya, J.,& Basak, P. (2022). Multistep traffic speed prediction: A deep learning based approach using latent space mapping considering spatio-temporal dependencies, Expert Systems with Applications, 189, 116140. https://doi.org/10.1016/j.eswa.2021.116140

Pan, Z., Liang, Y., Wang, W., Yu, Y., Zheng, Y., & Zhang, J. (2019). Urban Traffic Prediction from Spatio-Temporal Data Using Deep Meta Learning, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. https://doi.org/10.1145/3292500.3330884

Yang, H., Jiang, J., Zhao, Z., Pan, R.,& Tao, S. (2024). STVANet: A spatio-temporal visual attention framework with large kernel attention mechanism for citywide traffic dynamics prediction, Expert Systems with Applications, 254, 124466. https://doi.org/10.1016/j.eswa.2024.124466

Nikpour, B., & Armanfard, N. (2023). Spatio-temporal hard attention learning for skeleton-based activity recognition, Pattern Recognition, 139, 109428. https://doi.org/10.1016/j.patcog.2023.109428

Ma, C., Yan, L., & Xu, G. (2023). Spatio-temporal graph attention networks for traffic prediction, Transportation Letters, 1-11. https://doi.org/10.1080/19427867.2023.2261706

Chen, Y., Zheng, L., & Liu, W. (2022). Spatio-Temporal Attention-based Graph Convolution Networks for Traffic Prediction, 2022 IEEE International Conference on Systems, Man, and Cybernetics (SMC). https://doi.org/10.1109/SMC53654.2022.9945522

Shi, X., Qi, H., Shen, Y., Wu, G., & Yin, B. (2021). A Spatial-Temporal Attention Approach for Traffic Prediction, IEEE Transactions on Intelligent Transportation Systems, 22(8), 4909-4918. https://doi.org/10.1109/TITS.2020.2983651

Zeng, H., Peng, Z., Huang, X., Yang, Y., & Hu, R. (2022). Deep spatio-temporal neural network based on interactive attention for traffic flow prediction, Applied Intelligence, 52(9), 10285-10296. https://doi.org/10.1007/s10489-021-02879-1

Murugesan, R. K., Madhu, K., Sambandam, J., & Malliga, L. (2023). Covid-19 Forecasting Using CNN Approach With A Halbinomial Distribution And A Linear Decreasing Inertia Weight-Based Cat Swarm Optimization, INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL. 18(1). https://doi.org/10.15837/ijccc.2023.1.4396

Chao, Z. (2023). Machine learning-based intelligent weather modification forecast in smart city potential area, Computer Science and Information Systems, 20(2), 631-656. https://doi.org/10.2298/CSIS220717018C

Wang, S., Song, A., & Qian, Y. (2023). Predicting smart cities' electricity demands using k-means clustering algorithm in smart grid, Computer Science and Information Systems, (00), 13-13.

KNEŽEVIĆ, D., BLAGOJEVIĆ, M., & RANKOVIĆ, A. (2023). Electricity Consumption Prediction Model for Improving Energy Efficiency Based on Artificial Neural Networks, Studies in Informatics and Control, 32(1), 69-79. https://doi.org/10.24846/v32i1y202307

Additional Files

Published

2024-11-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.