Enhanced YOLOv8-based Lightweight Small Personnel Detection Algorithm for UAV Flood Emergency Rescue

Authors

  • Yunfan Bu Department of Electronic Information Engineering, Hebei University of Technology, Tianjin, China

DOI:

https://doi.org/10.15837/ijccc.2025.5.6869

Keywords:

UAV, Flood Emergency rescue, Small-target personnel detection, YOLOv8, Lightweight

Abstract

This study proposes an enhanced lightweight small-target detection algorithm tailored for UAVbased flood emergency rescues, building upon YOLOv8. By introducing a Linear Deformable Convolution kernel and a redesigned bottleneck structure with partial convolution, the algorithm not only captures personnel target features of different scales and shapes more efficiently and achieves higher detection accuracy, but also reduces the number of model parameters. In addition, by improving the structure of the detection head and adding the ResNeXt-SENet fusion layer, the algorithm is able to suppress the interference of the complex background in emergency rescue scenarios and focus more on detecting small-targeted people, while improving the global information integration capability of the model, so that the algorithm is better applicable to different small-targeted detection datasets. Evaluation on custom flood-rescue datasets and VisDrone2019 demonstrates a significant increase in detection accuracy for small targets and reduction in the number of model parameters. The detection accuracy and model size also compare favorably with other state-of-the-art target detection algorithm models under the same experimental conditions, highlighting the suitability of the model for resource-constrained real-time UAV applications in challenging environments.

References

Khan A.; Gupta S.; Gupta S K. (2022). Emerging UAV technology for disaster detection, mitigation, response, and preparedness Journal of Field Robotics, 39(6), 905-955, 2022 https://doi.org/10.1002/rob.22075

Lowe D G. (2004). Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60, 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94

Dalal N.;Triggs B. (2005). Histograms of oriented gradients for human detection, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 886-893, 2005. https://doi.org/10.1109/CVPR.2005.177

Kieritz H.;Becker S,; Hübner W.(2016). Online multi-person tracking using integral channel features, 2016 13th IEEE International Conference on Advanced Video and Signal Based Surveillance, 122-130, 2016. https://doi.org/10.1109/AVSS.2016.7738059

Li G.J.; Wang J.; Qin Y.W.(2024). Enhancing Wind Farm Reliability: A Field of View Enhanced Convolutional Neural Network-BasedModel for Fault Diagnosis and Prevention, International Journal of Computers Communications&Control, DOI: https://doi.org/10.15837/ijccc.2024.3.6609, 19(3), 6609, 2024. https://doi.org/10.15837/ijccc.2024.3.6609

Felzenszwalb P F.; Girshick R B.; McAllester D.(2009). Object detection with discriminatively trained part-based models, IEEE transactions on pattern analysis and machine intelligence, 32(9), 1627-1645, 2009. https://doi.org/10.1109/TPAMI.2009.167

Ashok Babu P.; Subba Rao B.V.; Vijay Bhaskar Reddy Y.(2023). Optimized CNNbased Brain Tumor Segmentationand Classification using Artificial Bee Colony and Thresholding, International Journal of Computers Communications&Control, DOI: https://doi.org/10.15837/ijccc.2023.1.4577, 18(1), 4577, 2023. https://doi.org/10.15837/ijccc.2023.1.4577

Girshick R.; Donahue J.; Darrell T.(2014). Rich feature hierarchies for accurate object detection and semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 580-587, 2014. https://doi.org/10.1109/CVPR.2014.81

Girshick R.(2015). Fast R-CNN, Computer Science, arXiv:1504.08083, 2015. https://doi.org/10.1109/ICCV.2015.169

Ren S.; He K.; Girshick R.(2016). Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE transactions on pattern analysis and machine intelligence, 39(6), 1137- 1149, 2016. https://doi.org/10.1109/TPAMI.2016.2577031

Redmon J.(2016). You only look once: Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. https://doi.org/10.1109/CVPR.2016.91

Wu S.; Liu Z.; Lu H.(2023). Shadow Hunter: Low-Illumination Object-Detection Algorithm, Applied Sciences, 13(16), 9261, 2023. https://doi.org/10.3390/app13169261

Huang X.(2023). Moving object detection in low-luminance images, The Visual Computer, 39(1), 183-195, 2023. https://doi.org/10.1007/s00371-021-02320-1

Gilroy S.; Jones E.; Glavin M.(2019). Overcoming occlusion in the automotive environment-A review, IEEE Transactions on Intelligent Transportation Systems, 22(1), 23-35, 2019. https://doi.org/10.1109/TITS.2019.2956813

He Y.; Zhu C.; Yin X C.(2021). Occluded pedestrian detection via distribution-based mutualsupervised feature learning, IEEE Transactions on Intelligent Transportation Systems, 23(8), 10514-10529, 2021. https://doi.org/10.1109/TITS.2021.3094800

Li Y.; Fan Q.; Huang H.(2023). A modified YOLOv8 detection network for UAV aerial image recognition, Drones, 7(5), 304, 2023. https://doi.org/10.3390/drones7050304

Hu J.; Li B.; Zhu H. (2024). Improved lightweight UAV target detection algorithm for YOLOv8, Computer Engineering and Applications, 60(08), 182-191, 2024.

Liu W.; Liu D.; Wang L. (2023). A review of research on deformable convolutional networks, Computer Science and Exploration, 17(7), 1549-1564, 2023.

[Online]. Available: www.github.com/ultralytics/, Accesed on 10 January 2023.

Wang C Y.; Bochkovskiy A.; Liao H Y M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 7464-7475, 2023. https://doi.org/10.1109/CVPR52729.2023.00721

Dai J.; Qi H.; Xiong Y. (2017). Deformable convolutional networks, Proceedings of the IEEE international conference on computer vision, 764-773, 2017. https://doi.org/10.1109/ICCV.2017.89

Zhu X.; Hu H.; Lin S. (2019). Deformable convnets v2: More deformable, better results, Proceedings of the IEEE/CVF conference on computer vision and patternrecognition, 9308-9316, 2019. https://doi.org/10.1109/CVPR.2019.00953

Du D W.; Zhu P F.; Wen L Y. (2019). VisDrone-DET2019: The Vision Meets Drone Object Detection in Image Challenge Results, Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, 213-226, 2019.

[Online]. Available: www.github.com/ultralytics/yolov5/, Accesed on 5 September 2022.

Li C.; Li L.; Jiang H. (2022). YOLOv6: A single-stage object detection framework for industrial applications, arxiv preprint, arxiv:2209.02976, 2022.

Liu W.; Anguelov D.; Erhan D. (2016). SSD: Single shot multibox detector, Proceedings of the European Conference on Computer Vision, 21-37, 2016. https://doi.org/10.1007/978-3-319-46448-0_2

Wang C Y.; Bochkovskiy A.; Liao H-Y M. (2023). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 7464-7475, 2023. https://doi.org/10.1109/CVPR52729.2023.00721

Yu X.; Gong Y.; Jiang N. (2020). Scale match for tiny person detection, Proceedings of The IEEE/CVF Winter Conference on Applications of Computer Vision, 1257-1265, 2020. https://doi.org/10.1109/WACV45572.2020.9093394

Cai Y.; Bian H.; Lin J. (2023). Retinexformer: One-stage retinex-based transformer for lowlight image enhancement, Proceedings of the IEEE/CVF International Conference on Computer Vision, 12504-12513, 2023. https://doi.org/10.1109/ICCV51070.2023.01149

Chen W.; Huang H.; Peng S. (2023). YOLO-face: a real-time face detector, The Visual Computer, 37, 805-813, 2023. https://doi.org/10.1007/s00371-020-01831-7

Additional Files

Published

2025-09-11

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.