Advancing hyperspectral image analysis: harnessing machine learning for precision vegetation identification in urban areas
DOI:
https://doi.org/10.15837/ijccc.2025.5.6923Keywords:
machine Learning method, urban vegetation, vegetation classification, supervised learning models.Abstract
Exploiting the advantages inherent in machine learning methodologies, particularly supervised learning models tailored for conventional image classification, this study assesses their efficacy in delineating vegetation in hyperspectral images. The investigation adheres to a dataset comprising 400 spectral signatures, evenly divided between vegetation and non-vegetation categories, each characterized by 380 spectral bands. Five distinct models—KNN, decision trees, support vector machines, random forests, and logistic regression—are scrutinized for their performance, leveraging metrics derived from the confusion matrix and cross-validation. The research adopts a modified version of the CRISP-DM methodology, segmented into four phases: understanding the data and the domain, data preparation, modeling and evaluation, and model deployment. Throughout these phases, various open-source libraries such as spectral, scikit-learn, numpy, pandas, and matplotlib are employed. Results indicate that all five models achieve cross-validation accuracies surpassing 95% in vegetation pixel detection within hyperspectral images, with the KNN model exhibiting superior performance at 99.3% accuracy. Subsequently, the model with optimal performance is deployed on a hyperspectral image encompassing the Manga neighborhood in Cartagena, Colombia, comprising 2250000 pixels and 380 frequency bands, yielding highly effective vegetation pixel detection. This article introduces an approach intended to serve as a benchmark for the identification of diverse materials in hyperspectral images at both academic and industrial levels, utilizing open-source technologies.
References
Pérez-Cabello, F.; Montorio, R.; and Alves, D. B.; (2021). Remote sensing techniques to assess post-fire vegetation recovery, Curr. Opin. Environ. Sci. Heal., vol. 21, p. 100251, Jun. 2021. https://doi.org/10.1016/j.coesh.2021.100251
Andreatta, D.; Gianelle, D.; Scotton, M.; and Dalponte, M.; (2022). Estimating grassland vegetation cover with remote sensing: A comparison between Landsat-8, Sentinel-2 and PlanetScope imagery, Ecol. Indic., vol. 141, p. 109102, 2022. https://doi.org/10.1016/j.ecolind.2022.109102
Sripada, R. P.; (2005). Determining In-Season Nitrogen Requirements for Corn Using Aerial Color-Infrared Photography, North Carolina State University.
Shikwambana, L.; Xongo, K.; Mashalane, M.; and Mhangara, P.; (2023). Climatic and Vegetation Response Patterns over South Africa during the 2010/2011 and 2015/2016 Strong ENSO Phases, Atmosphere (Basel), vol. 14, no. 2, pp. 1-14, 2023. https://doi.org/10.3390/atmos14020416
García-Pardo, K. A.; Moreno-Rangel, D.; Domínguez-Amarillo, S.; and García-Chávez, J. R.; (2022). Remote sensing for the assessment of ecosystem services provided by urban vegetation: A review of the methods applied, Urban For. Urban Green., vol. 74, p. 127636, Aug. 2022. https://doi.org/10.1016/j.ufug.2022.127636
Neinavaz, E.; Schlerf, M.; Darvishzadeh, R.; Gerhards, M.; and Skidmore, A. K.; (2021). Thermal infrared remote sensing of vegetation: Current status and perspectives, Int. J. Appl. Earth Obs. Geoinf., vol. 102, p. 102415, Oct. 2021. https://doi.org/10.1016/j.jag.2021.102415
Meusburger, K.; Bänninger, D.; and Alewell, C.; (2010). Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery, Int. J. Appl. Earth Obs. Geoinf., vol. 12, no. 3, pp. 201-207, Jun. 2010. https://doi.org/10.1016/j.jag.2010.02.009
Henrich, V.; Krauss, G.; Götze, C.; and Sandow, C.; Index DataBase. A database for remote sensing indices. 2012, https://www.indexdatabase.de/info/credits.php
Huang, S.; Tang, L.; Hupy, J. P.; Wang, Y.; and Shao, G.; (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing, J. For. Res., vol. 32, no. 1, pp. 1-6, 2021. https://doi.org/10.1007/s11676-020-01155-1
Beltrán Hernández, D. H.; (2017). Aplicación de índices de vegetación para evaluar procesos de restauración ecológica en el Parque Forestal Embalse del Neusa, Universidad Militar Nueva Granada, Neusa, Colombia, 2017.
Torres Gil, L. K.; Valdelamar Martínez, D.; and Saba, M.; (2023). The Widespread Use of Remote Sensing in Asbestos, Vegetation, Oil and Gas, and Geology Applications, Atmosphere (Basel), vol. 14, no. 1, p. 172, 2023. https://doi.org/10.3390/atmos14010172
Kauth, R. J.; and Thomas, G. S. P.; (1976). The tasselled cap - A graphic description of the spectral-temporal development of agricultural crops as seen by Landsat, Symposium of Machine Processing of Remotely-Sensed Data: Proc. of the LARS, Purdue University, West Lafayette, Indiana, pp. 4B41-4B51, Jun. 1979.
Tucker, C. J.; (1979). Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., vol. 8, no. 2, pp. 127-150, May 1979. https://doi.org/10.1016/0034-4257(79)90013-0
Huete, A. R.; (1988). A soil-adjusted vegetation index (SAVI), Remote Sens. Environ., vol. 25, no. 3, pp. 295-309, Aug. 1988. https://doi.org/10.1016/0034-4257(88)90106-X
Crippen, R. E.; (1990). Calculating the vegetation index faster, Remote Sens. Environ., vol. 34, no. 1, pp. 71-73, Oct. 1990. https://doi.org/10.1016/0034-4257(90)90085-Z
Gitelson, A. A.; and Merzlyak, M. N.; (1998). Remote sensing of chlorophyll concentration in higher plant leaves, Adv. Sp. Res., vol. 22, no. 5, pp. 689-692, Jan. 1998. https://doi.org/10.1016/S0273-1177(97)01133-2
Bannari, A.; Asalhi, H.; and Teillet, P. M.; (2002). Transformed difference vegetation index (TDVI) for vegetation cover mapping, IEEE International Geoscience and Remote Sensing Symposium, pp. 3053-3055 vol.5, 2002. https://doi.org/10.1109/IGARSS.2002.1026867
MaxMax; Enhanced Normalized Difference Vegetation Index (ENDVI).
Wolf, A. F.; (2012). Using WorldView-2 Vis-NIR multispectral imagery to support land mapping and feature extraction using normalized difference index ratios, Proc. SPIE, vol. 8390, pp. 188- 195, May 2012. https://doi.org/10.1117/12.917717
Shore, S. N.; (2003). Astrochemistry, Encycl. Phys. Sci. Technol., pp. 665-678, 2003. https://doi.org/10.1016/B0-12-227410-5/00032-6
Galle, N. J.; et al.; (2021). Correlation of WorldView-3 spectral vegetation indices and soil health indicators of individual urban trees with exceptions to topsoil disturbance, City Environ. Interact., vol. 11, p. 100068, 2021. https://doi.org/10.1016/j.cacint.2021.100068
Davies, B. F. R.; et al.; (2023). Multi- and hyperspectral classification of soft-bottom intertidal vegetation using a spectral library for coastal biodiversity remote sensing, Remote Sens. Environ., vol. 290, p. 113554, 2023. https://doi.org/10.1016/j.rse.2023.113554
Chanchí Golondrino, G. E.; Ospina Alarcón, M. A.; and Saba, M.; (2023). Vegetation Identification in Hyperspectral Images Using Distance/Correlation Metrics, Atmosphere (Basel)., vol. 14, no. 7, p. 1148, Jul. 2023. https://doi.org/10.3390/atmos14071148
Smyth, T. A. G.; Wilson, R.; Rooney, P.; and Yates, K. L.; (2022). Extent, accuracy and repeatability of bare sand and vegetation cover in dunes mapped from aerial imagery is highly variable, Aeolian Res., vol. 56, p. 100799, 2022. https://doi.org/10.1016/j.aeolia.2022.100799
Tian, J.; et al.; (2023). Simultaneous estimation of fractional cover of photosynthetic and nonphotosynthetic vegetation using visible-near infrared satellite imagery, Remote Sens. Environ., vol. 290, p. 113549, 2023. https://doi.org/10.1016/j.rse.2023.113549
Adão, T.; et al.; (2017). Hyperspectral Imaging: A Review on UAV-Based Sensors, Data Processing and Applications for Agriculture and Forestry, Remote Sens., vol. 9, no. 11, p. 1110, Oct. 2017. https://doi.org/10.3390/rs9111110
Wan, L.; Li, H.; Li, C.; Wang, A.; Yang, Y.; and Wang, P.; (2022). Hyperspectral Sensing of Plant Diseases: Principle and Methods, Agronomy, vol. 12, no. 6, pp. 1-19, 2022. https://doi.org/10.3390/agronomy12061451
Wang, S.; et al.; (2023). Airborne hyperspectral imaging of cover crops through radiative transfer process-guided machine learning, Remote Sens. Environ., vol. 285, p. 113386, 2023. https://doi.org/10.1016/j.rse.2022.113386
Khan, A.; Vibhute, A. D.; Mali, S.; and Patil, C. H.; (2022). A systematic review on hyperspectral imaging technology with a machine and deep learning methodology for agricultural applications, Ecol. Inform., vol. 69, p. 101678, 2022. https://doi.org/10.1016/j.ecoinf.2022.101678
Chen, D.; et al.; (2022). Improved Na+ estimation from hyperspectral data of saline vegetation by machine learning, Comput. Electron. Agric., vol. 196, p. 106862, 2022. https://doi.org/10.1016/j.compag.2022.106862
Gakhar, S.; and Tiwari, K. C.; (2021). Spectral - spatial urban target detection for hyperspectral remote sensing data using artificial neural network, Egypt. J. Remote Sens. Sp. Sci., vol. 24, no. 2, pp. 173-180, 2021. https://doi.org/10.1016/j.ejrs.2021.01.002
Ma, B.; Zeng, W.; Hu, G.; Cao, R.; Cui, D.; and Zhang, T.; (2022). Normalized difference vegetation index prediction based on the delta downscaling method and back-propagation artificial neural network under climate change in the Sanjiangyuan region, China, Ecol. Inform., vol. 72, p. 101883, 2022. https://doi.org/10.1016/j.ecoinf.2022.101883
Trombetti, M.; Riaño, D.; Rubio, M. A.; Cheng, Y. B.; and Ustin, S. L.; (2008). Multitemporal vegetation canopy water content retrieval and interpretation using artificial neural networks for the continental USA, Remote Sens. Environ., vol. 112, no. 1, pp. 203-215, 2008. https://doi.org/10.1016/j.rse.2007.04.013
Badola, A.; Panda, S. K.; Roberts, D. A.; Waigl, C. F.; Jandt, R. R.; and Bhatt, U. S.; (2022). A novel method to simulate AVIRIS-NG hyperspectral image from Sentinel-2 image for improved vegetation/wildfire fuel mapping, boreal Alaska, Int. J. Appl. Earth Obs. Geoinf., vol. 112, p. 102891, 2022 https://doi.org/10.1016/j.jag.2022.102891
Rumpf, T.; Mahlein, A.-K.; Steiner, U.; Oerke, E.-C.; Dehne, H.-W.; and Plümer, L.; (2010). Early detection and classification of plant diseases with Support Vector Machines based on hyperspectral reflectance, Comput. Electron. Agric., vol. 74, no. 1, pp. 91-99, 2010. https://doi.org/10.1016/j.compag.2010.06.009
Wang, L.; and Wang, Q.; (2022). Fast spatial-spectral random forests for thick cloud removal of hyperspectral images, Int. J. Appl. Earth Obs. Geoinf., vol. 112, p. 102916, 2022. https://doi.org/10.1016/j.jag.2022.102916
Ding, X.; Wang, Q.; and Tong, X.; (2022). Integrating 250 m MODIS data in spectral unmixing for 500 m fractional vegetation cover estimation, Int. J. Appl. Earth Obs. Geoinf., vol. 111, p. 102860, 2022. https://doi.org/10.1016/j.jag.2022.102860
Martínez-Plumed, F.; et al.; (2021). CRISP-DM Twenty Years Later: From Data Mining Processes to Data Science Trajectories, IEEE Trans. Knowl. Data Eng., vol. 33, no. 8, pp. 3048-3061, Aug. 2021. https://doi.org/10.1109/TKDE.2019.2962680
Yun, Z.; Weihua, L.; and Yang, C.; (2014). Applying balanced scorecard strategic performance management to CRISP-DM, Proc. 2014 Int. Conf. Inf. Sci. Electron. Electr. Eng., pp. 2009-2014, Apr. 2014. https://doi.org/10.1109/InfoSEEE.2014.6946275
Nock, R.; Sebban, M.; and Bernard, D.; (2003). A simple locally adaptive nearest neighbor rule with application to pollution forecasting, Int. J. Pattern Recognit. Artif. Intell., vol. 17, no. 08, pp. 1369-1382, Dec. 2003. https://doi.org/10.1142/S0218001403002952
Atiya, A. F.; (2005). Estimating the Posterior Probabilities Using the K -Nearest Neighbor Rule, Neural Comput., vol. 17, no. 3, pp. 731-740, Mar. 2005. https://doi.org/10.1162/0899766053019971
Toussaint, G.; (2005). Geometric proximity graphs for improving nearest neighbor methods in instance-based learning and data mining, Int. J. Comput. Geom. Appl., vol. 15, no. 02, pp. 101-150, Apr. 2005. https://doi.org/10.1142/S0218195905001622
Lee, H.; (2018). K-Nearest Neighbor rule using Distance Information Fusion, J. Korean Inst. Intell. Syst., vol. 28, no. 2, pp. 160-163, Apr. 2018. https://doi.org/10.5391/JKIIS.2018.28.2.160
Zhou, Z.; Li, Z.; Cai, Z.; and Wang, P.; (2019). Fault Identification Using Fast k-Nearest Neighbor Reconstruction, Processes, vol. 7, no. 6, p. 340, Jun. 2019. https://doi.org/10.3390/pr7060340
Kang, S.; (2021). k-Nearest Neighbor Learning with Graph Neural Networks, Mathematics, vol. 9, no. 8, p. 830, Apr. 2021. https://doi.org/10.3390/math9080830
Doru, C.; and Costel, B.; (2023). Classification of Image Classes Based on the PCA Algorithm Optimized by the KNN Algorithm Improved by Genetic Algorithms, 2023 6th International Conference on Information Communication and Signal Processing (ICICSP), IEEE, pp. 103-108, Sep. 2023. https://doi.org/10.1109/ICICSP59554.2023.10390821
Abe, S.; (2020). Minimal Complexity Support Vector Machines for Pattern Classification, Computers, vol. 9, no. 4, p. 88, Nov. 2020. https://doi.org/10.3390/computers9040088
Harikiran, J. D. J. H.; (2020). Hyperspectral image classification using support vector machines, IAES Int. J. Artif. Intell., vol. 9, no. 4, p. 684, Dec. 2020. https://doi.org/10.11591/ijai.v9.i4.pp684-690
Díaz-Vico, D.; Prada, J.; Omari, A.; and Dorronsoro, J.; (2020). Deep support vector neural networks, Integr. Comput. Aided. Eng., vol. 27, no. 4, pp. 389-402, Sep. 2020. https://doi.org/10.3233/ICA-200635
Ioannou, C.; and Vassiliou, V.; (2021). Network Attack Classification in IoT Using Support Vector Machines, J. Sens. Actuator Networks, vol. 10, no. 3, p. 58, Aug. 2021. https://doi.org/10.3390/jsan10030058
Huang, Y.; Yang, G.; Xu, Y.; and Zhou, H.; (2021). Differential Privacy Principal Component Analysis for Support Vector Machines, Secur. Commun. Networks, vol. 2021, pp. 1-12, Jul. 2021. https://doi.org/10.1155/2021/5542283
Ravi, S. R.; (2021). Naturally Generated Decision Trees for Image Classification, [Online].
Xu, S.; Liu, S.; Wang, H.; Chen, W.; Zhang, F.; and Xiao, Z.; (2020). A Hyperspectral Image Classification Approach Based on Feature Fusion and Multi-Layered Gradient Boosting Decision Trees, Entropy, vol. 23, no. 1, p. 20, Dec. 2020.. https://doi.org/10.3390/e23010020
Li, F.; Zhang, X.; and Ji, Y.; (2023). Decision Tree Model to Classify Wastewater Evaporation, Ind. Eng. Chem. Res., vol. 62, no. 20, pp. 8111-8117, May 2023. https://doi.org/10.1021/acs.iecr.3c00250
Jeon, Y.; and Cho, H.; (2019). Model based hybrid decision tree, J. Korean Data Inf. Sci. Soc., vol. 30, no. 3, pp. 515-524, May 2019. https://doi.org/10.7465/jkdi.2019.30.3.515
Yao, J.; (2022). Carbon Sequestration Model Based on Decision Tree Regression and Logic Tree Model, Acad. J. Environ. Earth Sci., vol. 4, no. 3, 2022. https://doi.org/10.25236/AJEE.2022.040306
Jiang, Y.; (2019). Personalized Thermal Comfort Model with Decision Tree, Intell. Control Autom., vol. 10, no. 4, pp. 168-177, 2019. https://doi.org/10.4236/ica.2019.104012
Jin, B.; et al.; (2022). Determination of viability and vigor of naturally-aged rice seeds using hyperspectral imaging with machine learning, Infrared Phys. Technol., vol. 122, p. 104097, 2022. https://doi.org/10.1016/j.infrared.2022.104097
LaValley, M. P.; (2008). Logistic regression, Circulation, vol. 117, no. 18, pp. 2395-2399, 2008. https://doi.org/10.1161/CIRCULATIONAHA.106.682658
Saha, D.; and Manickavasagan, A.; (2021). Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review, Curr. Res. Food Sci., vol. 4, pp. 28-44, 2021. https://doi.org/10.1016/j.crfs.2021.01.002
Lever, J.; Krzywinski, M.; and Altman, N.; (2016). Logistic regression, Nat. Methods, vol. 13, no. 7, pp. 541-542, Jul. 2016. https://doi.org/10.1038/nmeth.3904
Zaidi, A.; and Al Luhayb, A. S. M.; (2023). Two Statistical Approaches to Justify the Use of the Logistic Function in Binary Logistic Regression, Math. Probl. Eng., vol. 2023, no. 1, Jan. 2023. https://doi.org/10.1155/2023/5525675
Wang, Z.; Hu, M.; and Zhai, G.; (2018). Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data, Sensors, vol. 18, no. 4, p. 1126, 2018. https://doi.org/10.3390/s18041126
Shebl, A.; Abriha, D.; Fahil, A. S.; El-Dokouny, H. A.; Elrasheed, A. A.; and Csámer, Á.; (2023). PRISMA hyperspectral data for lithological mapping in the Egyptian Eastern Desert: Evaluating the support vector machine, random forest, and XG boost machine learning algorithms, Ore Geol. Rev., vol. 161, p. 105652, 2023. https://doi.org/10.1016/j.oregeorev.2023.105652
Flynn, K. C.; Baath, G.; Lee, T. O.; Gowda, P.; and Northup, B.; (2023). Hyperspectral reflectance and machine learning to monitor legume biomass and nitrogen accumulation, Comput. Electron. Agric., vol. 211, p. 107991, 2023. https://doi.org/10.1016/j.compag.2023.107991
Yu, F.; Bai, J.; Jin, Z.; Gou, Z.; Yang, J.; and Chen, C.; (2023). Combining the critical nitrogen concentration and machine learning algorithms to estimate nitrogen deficiency in rice from UAV hyperspectral data, J. Integr. Agric., vol. 22, no. 4, pp. 1216-1229, 2023. https://doi.org/10.1016/j.jia.2022.12.007
Zambrano-Prado, P.; et al.; (2020). Laboratory-based spectral data acquisition of roof materials, Int. J. Remote Sens., vol. 41, no. 23, pp. 9180-9205, Dec. 2020. https://doi.org/10.1080/01431161.2020.1798548
Curcio, A. C.; Barbero, L.; and Peralta, G.; (2023). UAV-Hyperspectral Imaging to Estimate Species Distribution in Salt Marshes: A Case Study in the Cadiz Bay (SW Spain), Remote Sens., vol. 15, no. 5, 2023 https://doi.org/10.3390/rs15051419
ESRI; (2023). ENVI, 2023.
Additional Files
Published
Issue
Section
License
Copyright (c) 2025 Gabriel ElÃas Chanchí Golondrino, Manuel Alejandro Ospina Alarcón, Manuel Saba

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
ONLINE OPEN ACCES: Acces to full text of each article and each issue are allowed for free in respect of Attribution-NonCommercial 4.0 International (CC BY-NC 4.0.
You are free to:
-Share: copy and redistribute the material in any medium or format;
-Adapt: remix, transform, and build upon the material.
The licensor cannot revoke these freedoms as long as you follow the license terms.
DISCLAIMER: The author(s) of each article appearing in International Journal of Computers Communications & Control is/are solely responsible for the content thereof; the publication of an article shall not constitute or be deemed to constitute any representation by the Editors or Agora University Press that the data presented therein are original, correct or sufficient to support the conclusions reached or that the experiment design or methodology is adequate.