A multilayer perceptron neural network prediction approach to polygraph scoring

Authors

  • Dana Rad Aurel Vlaicu University of Arad, Romania
  • Csaba Kiss Hyperion University of Bucharest, Romania
  • Gavril Rad Aurel Vlaicu University of Arad, Faculty of Educational Sciences Psychology and Social Work, Center of Research Development and Innovation in Psychology, Arad, Romania
  • Nicolae Paraschiv Petroleum-Gas University of Ploiești, Romania
  • Marius Bălaș Aurel Vlaicu University of Arad, Faculty of Engineering, Arad, Romania

DOI:

https://doi.org/10.15837/ijccc.2025.2.7008

Keywords:

Polygraph, scoring system, Multilayer Perceptron Neural Network (MLP), deception detection

Abstract

Years of studies have consistently demonstrated that people’s capacity to detect deceit is no better than chance. For law enforcement officers, accurate deception detection is critical. The traditional polygraph examination is now the sole standardized and reliable method for detecting deceit. There are several standardized scoring protocols (Lafayette Polygraph System 11.8.6) to Control Question Technique (CQT) Polygraph examinations: PolyScore, OSS-2, OSS-3 and manually scoring. Due to the ongoing controversy over which scoring system performs better in terms of avoiding false positive and false negative errors, this study introduces a Multilayer Perceptron Neural Network (MLP) prediction approach to Polygraph deception scoring utilizing manually scored examination data. A MLP was trained to predict high and low deception scores in 400 offender data, based on the most predictive psychophysiological indicators found in the scientific literature: amplitude of electrodermal reaction (ARED), amplitude of blood pressure in brachial pulse (ATAB), change of base line level in chest breathing (MNBRT) and difference of altitude between breathing cycles (DIFA). The model predicted the deception level of the 400 offenders with a correct classification rate (CCR) of 80%, result consistent with the prediction accuracy reported in the recent literature. The MLP neural network modeling results showed that based on the four psychophysiological indicators ARED, ATAB, MNBRT and DIFA there is an 80% correct classification rate of high and low deception scores received by insincere subjects. The key outcome of this study suggests that MLP represents a robust approach to identify deception in manually scored polygraph examinations.

References

Albrecht, W. S., Albrecht, C. O., Albrecht, C. C., Zimbelman, M. F. (2018). Fraud examination. Cengage Learning.

Albu, R. D., Dzitac, I., Popentiu-Vlădicescu, F., Naghiu, I. M. (2014). Input Projection Algorithms Influence in Prediction and Optimization of QoS Accuracy. International Journal of Computers Communications & Control, 9(2), 131-138. https://doi.org/10.15837/ijccc.2014.2.1013

Arasteh, A., Moradi, M. H., Janghorbani, A. (2016). A novel method based on empirical mode decomposition for P300-based detection of deception. IEEE Transactions on Information Forensics and Security, 11(11), 2584-2593. https://doi.org/10.1109/TIFS.2016.2590938

Ash, P. (1971). Screening employment applicants for attitudes toward theft. Journal of Applied Psychology, 55(2), 161. https://doi.org/10.1037/h0030788

Baghel, N., Singh, D., Dutta, M. K., Burget, R., Myska, V. (2020, July). Truth identification from EEG signal by using convolution neural network: lie detection. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (pp. 550-553). IEEE. https://doi.org/10.1109/TSP49548.2020.9163497

Baghel, N., Singh, D., Dutta, M. K., Burget, R., & Myska, V. (2020). Truth identification from EEG signal by using convolution neural network: lie detection. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (pp. 550-553). IEEE. https://doi.org/10.1109/TSP49548.2020.9163497

Bashore, T. R., Rapp, P. E. (1993). Are there alternatives to traditional polygraph procedures? Psychological Bulletin, 113(1), 3-22. https://doi.org/10.1037//0033-2909.113.1.3

Ben-Shakhar, G., Bar-Hillel, M., Lieblich, I. (1986). Trial by polygraph: Scientific and juridical issues in lie detection. Behavioral Sciences the Law, 4(4), 459-479. https://doi.org/10.1002/bsl.2370040408

Bhutta, M. R., Hong, M. J., Kim, Y. H., Hong, K. S. (2015). Single-trial lie detection using a combined fNIRS-polygraph system. Frontiers in psychology, 6, 709. https://doi.org/10.3389/fpsyg.2015.00709

Bhuvaneswari, P., Kumar, J. S. (2015). A note on methods used for deception analysis and influence of thinking stimulus in deception detection. International Journal of Engineering and Technology, 7(1), 109-116.

Brouwer, E. (2021). Schengen and the administration of exclusion: legal remedies caught in between entry bans, risk assessment and artificial intelligence. European Journal of Migration and Law, 23(4), 485-507. https://doi.org/10.1163/15718166-12340115

Cook, L. G., Mitschow, L. C. (2019). Beyond the polygraph: Deception detection and the autonomic nervous system. Federal Practitioner, 36(7), 316.

Cook, L. G., Mitschow, L. C. (2019). Beyond the polygraph: Deception detection and the autonomic nervous system. Federal Practitioner, 36(7), 316.

Cross, T. P., Saxe, L. (1993). A critique of the validity of polygraph testing in child sexual abuse cases. Journal of Child Sexual Abuse, 1(4), 19-34. https://doi.org/10.1300/J070v01n04_02

Cunningham, M. R. (1989). Test-taking motivations and outcomes on a standardized measure of on-the-job integrity. Journal of Business and Psychology, 4(1), 119-127. https://doi.org/10.1007/BF01023042

Daneshi Kohan, M., Motie Nasrabadi, A., Shamsollahi, M. B., Sharifi, A. (2020). EEG/PPG effective connectivity fusion for analyzing deception in interview. Signal, Image and Video Processing, 14(5), 907-914. https://doi.org/10.1007/s11760-019-01622-1

Dollins, A. B., Kraphol, D. J., Dutton, D. W. (2000). Computer algorithm comparison. Polygraph, 29(3), 237-257.

Elkins, A. C., Gupte, A., Cameron, L. (2019, July). Humanoid robots as interviewers for automated credibility assessment. In International Conference on Human-Computer Interaction (pp. 316-325). Springer, Cham. https://doi.org/10.1007/978-3-030-22338-0_26

Farrow, T. F., Burgess, J., Wilkinson, I. D., Hunter, M. D. (2015). Neural correlates of selfdeception and impression-management. Neuropsychologia, 67, 159-174. https://doi.org/10.1016/j.neuropsychologia.2014.12.016

Gamer, M. (2014). Mind reading using neuroimaging: Is this the future of deception detection?. European Psychologist, 19(3), 172. https://doi.org/10.1027/1016-9040/a000193

Gamer, M. (2014). Mind reading using neuroimaging: Is this the future of deception detection?. European Psychologist, 19(3), 172. https://doi.org/10.1027/1016-9040/a000193

Giansiracusa, N. (2021). Prevarication and the Polygraph. In How Algorithms Create and Prevent Fake News (pp. 99-118). Apress, Berkeley, CA. https://doi.org/10.1007/978-1-4842-7155-1_5

Gogate, M., Adeel, A., Hussain, A. (2017, November). Deep learning driven multimodal fusion for automated deception detection. In 2017 IEEE symposium series on computational intelligence (SSCI) (pp. 1-6). IEEE. https://doi.org/10.1109/SSCI.2017.8285382

Gordon, N. J. (2016). Essentials of polygraph and polygraph testing. CRC Press. https://doi.org/10.1201/9781315438641

Gordon, N. J., Mohamed, F. B., Faro, S. H., Platek, S. M., Ahmad, H., Williams, J. M. (2006). Integrated zone comparison polygraph technique accuracy with scoring algorithms. Physiology behavior, 87(2), 251-254. https://doi.org/10.1016/j.physbeh.2005.08.046

Happel, M. D. (2005). Neuroscience and the Detection of Deception. Review of Policy Research, 22(5), 667-685. https://doi.org/10.1111/j.1541-1338.2005.00166.x

Horvath, F. (2020). A Hundred Years of Polygraphy: Some Primary Changes and Related Issues. European Polygraph, 1, 31-45. https://doi.org/10.2478/ep-2020-0007

Kohan, M. D., Nasrabadi, A. M., Shamsollahi, M. B. (2020). Interview based connectivity analysis of EEG in order to detect deception. Medical hypotheses, 136, 109517. https://doi.org/10.1016/j.mehy.2019.109517

Lakshan, I., Wickramasinghe, L., Disala, S., Chandrasegar, S., Haddela, P. S. (2019, October). Real time deception detection for criminal investigation. In 2019 National Information Technology Conference (NITC) (pp. 90-96). IEEE. https://doi.org/10.1109/NITC48475.2019.9114422

Lapadusi, V., Dobreanu, R. (2014). History of Polygraph/Din Istoria Tehnicii Poligraf. Romanian Journal of Forensic Science, 15(95), 1737.

Lo, Y. L., Fook-Chong, S., Tan, E. K. (2003). Increased cortical excitability in human deception. Neuroreport, 14(7), 1021-1024. https://doi.org/10.1097/00001756-200305230-00023

Marouf, A. A., Ashrafi, A. F., Ahmed, T., Emon, T. (2019). A Machine Learning based Approach for Mapping Personality Traits and Perceived Stress Scale of Undergraduate Students. International Journal of Modern Education & Computer Science, 11(8). https://doi.org/10.5815/ijmecs.2019.08.05

Marx, G. T. (1998). Ethics for the new surveillance. The Information Society, 14(3), 171-185. https://doi.org/10.1080/019722498128809

Masip, J. (2017). Deception detection: State of the art and future prospects. Psicothema, 29(2), 149-159. https://doi.org/10.7334/psicothema2017.34

Matte, J. A. (1996). Forensic psychophysiology using the polygraph: Scientific truth verification, lie detection. JAM Publications.

Matte, J. A. (2007). Critical Analysis of Krapohl's Validated Polygraph Techniques. Polygraph, 36(1), 29-34.

Matte, J. A. (2020). Foremost Changes in Polygraph in Last 100 Years. European Polygraph, 14(1 (51)), 47-49. https://doi.org/10.2478/ep-2020-0009

Meijer, E. H., Verschuere, B. (2017). Deception detection based on neuroimaging: Better than the polygraph?. Journal of Forensic Radiology and Imaging, 8, 17-21. https://doi.org/10.1016/j.jofri.2017.03.003

Meijer, E. H., Verschuere, B. (2017). Deception detection based on neuroimaging: Better than the polygraph?. Journal of Forensic Radiology and Imaging, 8, 17-21. https://doi.org/10.1016/j.jofri.2017.03.003

Nagle, D. E. (1983). The Polygraph in the Workplace. U. Rich. L. Rev., 18, 43.

Nelson, R. (2015). Scientific basis for polygraph testing. Polygraph, 44(1), 28-61. https://doi.org/10.1201/9781315438641-2

Nelson, R. (2019). Literature Survey of Structural Weighting of Polygraph Signals: Why Double the EDA?. Polygraph & Forensic Credibility Assessment, 48(2), 105-112.

Nevins, J. L. (2004). Measuring the mind: A comparison of personality testing to polygraph testing in the hiring process. Penn St. L. Rev., 109, 857.

Nortje, A., Tredoux, C. (2019). How good are we at detecting deception? A review of current techniques and theories. South African Journal of Psychology, 49(4), 491-504. https://doi.org/10.1177/0081246318822953

Nuwer, M. R. (1990). On the controversies about clinical use of EEG brain mapping. Brain Topography, 3(1), 103-111. https://doi.org/10.1007/BF01128867

Nuwer, M. R. (1990). The development of EEG brain mapping. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 7(4), 459-471. https://doi.org/10.1097/00004691-199010000-00002

O'Shea, J., Crockett, K., Khan, W., Kindynis, P., Antoniades, A., Boultadakis, G. (2018). Intelligent deception detection through machine based interviewing. In 2018 International joint conference on neural networks (IJCNN) (pp. 1-8). IEEE. https://doi.org/10.1109/IJCNN.2018.8489392

Oravec, J. A. (2022). The emergence of "truth machines"?: Artificial intelligence approaches to lie detection. Ethics and Information Technology, 24(1), 1-10. https://doi.org/10.1007/s10676-022-09621-6

Oswald, M. (2020). Technologies in the twilight zone: early lie detectors, machine learning and reformist legal realism. International Review of Law, Computers & Technology, 34(2), 214-231. https://doi.org/10.1080/13600869.2020.1733758

Pasca, V. (2012). Study regarding psychophysiological reactivity values depending on subject's gender in polygraph testing. Procedia-Social and Behavioral Sciences, 33, 821-825. https://doi.org/10.1016/j.sbspro.2012.01.236

Pérez-Rosas, V., Abouelenien, M., Mihalcea, R., Burzo, M. (2015, November). Deception detection using real-life trial data. In Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (pp. 59-66). https://doi.org/10.1145/2818346.2820758

Popescu, M. C., Balas, V. E., Perescu-Popescu, L., Mastorakis, N. (2009). Multilayer perceptron and neural networks. WSEAS Transactions on Circuits and Systems, 8(7), 579-588.

Rad, D., Magulod, G.C. Jr., Balas, E., Roman, A., Egerau, A., Maier, R., Ignat, S., Dughi, T., Balas, V., Demeter, E., Rad, G. and Chis, R. (2022). A Radial Basis Function Neural Network Approach to Predict Preschool Teachers' Technology Acceptance Behavior. Front. Psychol. 13:880753. https://doi.org/10.3389/fpsyg.2022.880753

Raskin, D. C. (1987). Methodological issues in estimating polygraph accuracy in field applications. Canadian Journal of Behavioural Science/Revue canadienne des sciences du comportement, 19(4), 389. https://doi.org/10.1037/h0079999

Raskin, D. C., Kircher, J. C. (2014). Validity of polygraph techniques and decision methods. In Credibility assessment (pp. 63-129). Academic Press. https://doi.org/10.1016/B978-0-12-394433-7.00003-8

Raskin, D. C., Kircher, J. C., Honts, C. R. (2019). Computerized Polygraph Interpretations and Detection of Physical Countermeasures. In Anti-Terrorism; Forensic Science; Psychology in Police Investigations (pp. 179-188). Routledge. https://doi.org/10.4324/9780429036590-20

Raskin, D. C., Kircher, J. C., Honts, C. R., Horowitz, S. W. (2019). A Study of the Validity of Polygraph Examinations in Criminal Investigation: Final Report to the National Institute of Justice Grant No. 85-IJ-CX-0040. Polygraph, 48(1), 10-39.

Saeed, S., Romarheim, A., Mancia, G., Saxvig, I. W., Gulati, S., Lehmann, S., Bjorvatn, B. (2022). Characteristics of hypertension and arterial stiffness in obstructive sleep apnea: A Scandinavian experience from a prospective study of 6408 normotensive and hypertensive patients. The Journal of Clinical Hypertension, 24(4), 385-394. https://doi.org/10.1111/jch.14425

Sánchez-Monedero, J., Dencik, L. (2022). The politics of deception borders:'biomarkers of deceit'and the case of iBorderCtrl. Information, Communication & Society, 25(3), 413-430. https://doi.org/10.1080/1369118X.2020.1792530

Selič, P. (2009). Analytical review of validated polygraph techniques. Journal of Criminal Investigation and Criminology/Ljubljana, 60, 4.

Slowik, S. M. (2013). Evaluating Previously Conducted Polygraph Examinations. Polygraph, 42(4), 203-208.

Slowik, S. M. (2020). Critical Changes Over the 100 Year Evolution of Polygraph Practices. European Polygraph, 14(1 (51)), 50-57. https://doi.org/10.2478/ep-2020-0010

Twyman, N. W., Proudfoot, J. G., Schuetzler, R. M., Elkins, A. C., Derrick, D. C. (2015). Robustness of multiple indicators in automated screening systems for deception detection. Journal of Management Information Systems, 32(4), 215-245. https://doi.org/10.1080/07421222.2015.1138569

Wahsheh, H., Al-Zahrani, M. (2021). Secure real-time computational intelligence system against malicious QR code links. International Journal of Computers Communications & Control, 16(3), 4186. https://doi.org/10.15837/ijccc.2021.3.4186

Wahsheh, H., Al-Zahrani, M., ...Oprea, M., Mihalache, S. F., Popescu, M. (2017). Computational intelligence-based PM2.5 air pollution forecasting. International Journal of Computers Communications & Control, 12(3), 365-380. https://doi.org/10.15837/ijccc.2017.3.2907

Walczyk, J. J., Igou, F. P., Dixon, A. P., Tcholakian, T. (2013). Advancing lie detection by inducing cognitive load on liars: a review of relevant theories and techniques guided by lessons from polygraph-based approaches. Frontiers in psychology, 4, 14. https://doi.org/10.3389/fpsyg.2013.00014

Wang, X., Shi, Y., Liu, L. (2021). Research on non-invasive psychological detection technology based on artificial intelligence. Academic Journal of Humanities & Social Sciences, 4(3). https://doi.org/10.25236/AJHSS.2021.040303

Widacki, J. (2020). A Half-Century of Experiences with the Polygraph. European Polygraph 14(1)51, 58-61. https://doi.org/10.2478/ep-2020-0011

Zafran, E. L., Stickle, J. R. (1984). Polygraphs in Employment: A State Survey. Clev. St. L. Rev., 33, 751.

Sinescu, C., Negrutiu, M., Pop, D., Cuc, L., DeSabata, A., Negru, R., Podoleanu, A. (2009, May). The importance of holograms in dentistry. In Holography: Advances and Modern Trends (Vol. 7358, pp. 138-147). SPIE. https://doi.org/10.1117/12.821545

Toader, C. S., Rujescu, C. I., Feher, A., Sălăşan, C., Cuc, L. D., Bodnár, K. (2023). Generation differences in the behaviour of household consumers in Romania related to voluntary measures to reduce electric energy consumption. Amfiteatru Economic, 25(64), 710-727. https://doi.org/10.24818/EA/2023/64/710

Additional Files

Published

2025-03-01

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.